scholarly journals Enhanced Production of Photosynthetic Pigments and Various Metabolites and Lipids in the Cyanobacteria Synechocystis sp. PCC 7338 Culture in the Presence of Exogenous Glucose

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
YuJin Noh ◽  
Hwanhui Lee ◽  
Myeongsun Kim ◽  
Seong-Joo Hong ◽  
Hookeun Lee ◽  
...  

Synechocystis strains are cyanobacteria that can produce useful biomaterials for biofuel and pharmaceutical resources. In this study, the effects of exogenous glucose (5-mM) on cell growth, photosynthetic pigments, metabolites, and lipids in Synechocystis sp. PCC 7338 (referred to as Synechocystis 7338) were investigated. Exogenous glucose increased cell growth on days 9 and 18. The highest production (mg/L) of chlorophyll a (34.66), phycocyanin (84.94), allophycocyanin (34.28), and phycoerythrin (6.90) was observed on day 18 in Synechocystis 7338 culture under 5-mM glucose. Alterations in metabolic and lipidomic profiles under 5-mM glucose were investigated using gas chromatography-mass spectrometry (MS) and nanoelectrospray ionization-MS. The highest production (relative intensity/L) of aspartic acid, glutamic acid, glycerol-3-phosphate, linolenic acid, monogalactosyldiacylglycerol (MGDG) 16:0/18:1, MGDG 16:0/20:2, MGDG 18:1/18:2, neophytadiene, oleic acid, phosphatidylglycerol (PG) 16:0/16:0, and PG 16:0/17:2 was achieved on day 9. The highest production of pyroglutamic acid and sucrose was observed on day 18. We suggest that the addition of exogenous glucose to Synechocystis 7338 culture could be an efficient strategy for improving growth of cells and production of photosynthetic pigments, metabolites, and intact lipid species for industrial applications.

2021 ◽  
Author(s):  
Alexandre P Blanchard ◽  
Yun Wang ◽  
Graeme P Taylor ◽  
Matthew W Granger ◽  
Stephen Fai ◽  
...  

Bioinformatic tools capable of registering, rapidly and reproducibly, large numbers of nanoliquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) lipidomic datasets are lacking. We provide here a freely available Retention Time Standardization and Registration (RTStaR) algorithm that aligns nLC-nESI-MS/MS spectra within a single dataset and compares these aligned retention times across multiple datasets. This two-step calibration matches cor-responding and identifies unique lipid species in different lipidomes from different matrices and organisms. RTStaR was developed using a population-based study of 1001 human serum samples composed of 71 distinct glycerophosphocholine metabolites comprising a total of 68,572 analytes. Platform and matrix independence were validated using different MS instruments, nLC methodologies, and mammalian lipidomes. The complete algorithm is packaged in two modular ExcelTM workbook templates for easy implementation. RTStaR is freely available from the India Taylor Lipidomics Research Platform http://www.neurolipidomics.ca/rtstar/rtstar.html. Technical support is provided through [email protected]


2013 ◽  
Vol 443 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Elena Sokol ◽  
Reinaldo Almeida ◽  
Hans Kristian Hannibal-Bach ◽  
Dorota Kotowska ◽  
Johannes Vogt ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiago A. Conde ◽  
Daniela Couto ◽  
Tânia Melo ◽  
Margarida Costa ◽  
Joana Silva ◽  
...  

AbstractThere is a growing trend to explore microalgae as an alternative resource for the food, feed, pharmaceutical, cosmetic and fuel industry. Moreover, the polar lipidome of microalgae is interesting because of the reports of bioactive polar lipids which could foster new applications for microalgae. In this work, we identified for the first time the Chlorococcum amblystomatis lipidome using hydrophilic interaction liquid chromatography-high resolution electrospray ionization- tandem mass spectrometry (HILIC–HR–ESI–MS/MS). The Chlorococcum amblystomatis strain had a lipid content of 20.77% and the fatty acid profile, determined by gas chromatography-mass spectrometry, has shown that this microalga contains high amounts of omega-3 polyunsaturated fatty acids (PUFAs). The lipidome identified included 245 molecular ions and 350 lipid species comprising 15 different classes of glycolipids (6), phospholipids (7) and betaine lipids (2). Of these, 157 lipid species and the main lipid species of each class were esterified with omega-3 PUFAs. The lipid extract has shown antioxidant activity and anti-inflammatory potential. Lipid extracts also had low values of atherogenic (0.54) and thrombogenic index (0.27). In conclusion, the lipid extracts of Chlorococcum amblystomatis have been found to be a source of lipids rich in omega-3 PUFAs for of great value for the food, feed, cosmetic, nutraceutical and pharmaceutical industries.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Peiwu Cui ◽  
Yunhai Shao ◽  
Yanxin Wang ◽  
Rui Zhao ◽  
Huihui Zhan ◽  
...  

Abstract Purpose To explore a competitive PHB-producing fermentation process, this study evaluated the potential for Methylobacterium sp. XJLW to produce simultaneously PHB and coenzyme Q10 (CoQ10) using methanol as sole carbon and energy source. Methods The metabolic pathways of PHB and CoQ10 biosynthesis in Methylobacterium sp. XJLW were first mined based on the genomic and comparative transcriptomics information. Then, real-time fluorescence quantitative PCR (RT-qPCR) was employed for comparing the expression level of important genes involved in PHB and CoQ10 synthesis pathways’ response to methanol and glucose. Transmission electron microscope (TEM), gas chromatography/mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), Fourier transformation infrared spectrum (FT-IR), and liquid chromatography/mass spectrometry (LC-MS) methods were used to elucidate the yield and structure of PHB and CoQ10, respectively. PHB and CoQ10 productivity of Methylobacterium sp. XJLW were evaluated in Erlenmeyer flask for medium optimization, and in a 5-L bioreactor for methanol fed-batch strategy according to dissolved oxygen (DO) and pH control. Results Comparative genomics analysis showed that the PHB and CoQ10 biosynthesis pathways co-exist in Methylobacterium sp. XJLW. Transcriptomics analysis showed that the transcription level of key genes in both pathways responding to methanol was significantly higher than that responding to glucose. Correspondingly, strain Methylobacterium sp. XJLW can produce PHB and CoQ10 simultaneously with higher yield using cheap and abundant methanol than using glucose as sole carbon and energy source. The isolated products showed the structure characteristics same to that of standard PHB and CoQ10. The optimal medium and cultural conditions for PHB and CoQ10 co-production by Methylobacterium sp. XJLW was in M3 medium containing 7.918 g L-1 methanol, 0.5 g L-1 of ammonium sulfate, 0.1% (v/v) of Tween 80, and 1.0 g L-1 of sodium chloride, under 30 °C and pH 7.0. In a 5-L bioreactor coupled with methanol fed-batch process, a maximum DCW value (46.31 g L-1) with the highest yields of PHB and CoQ10, reaching 6.94 g L-1 and 22.28 mg L-1, respectively. Conclusion Methylobacterium sp. XJLW is potential for efficiently co-producing PHB and CoQ10 employing methanol as sole carbon and energy source. However, it is still necessary to further optimize fermentation process, and genetically modify strain pathway, for enhanced production of PHB and CoQ10 simultaneously by Methylobacterium sp. XJLW. It also suggests a potential strategy to develop efficiently co-producing other high-value metabolites using methanol-based bioprocess.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4179
Author(s):  
Heayyean Lee ◽  
Hwanhui Lee ◽  
Sujeong Park ◽  
Myeongsun Kim ◽  
Ji Young Park ◽  
...  

SQCC is a major type of NSCLC, which is a major cause of cancer-related deaths, and there were no reports regarding the prediction of metastatic potential of lung SQCC by metabolomic and lipidomic profiling. In this study, metabolomic and lipidomic profiling of lung SQCC were performed to predict its metastatic potential and to suggest potential therapeutic targets for the inhibition of lung SQCC metastasis. Human bronchial epithelial cells and four lung SQCC cell lines with different metastatic potentials were analyzed using gas chromatography–mass spectrometry and direct infusion-mass spectrometry. Based on the obtained metabolic and lipidomic profiles, we constructed models to predict the metastatic potential of lung SQCC; glycerol, putrescine, β-alanine, hypoxanthine, inosine, myo-inositol, phosphatidylinositol (PI) 18:1/18:1, and PI 18:1/20:4 were suggested as characteristic metabolites and intact lipid species associated with lung SQCC metastatic potential. In this study, we established predictive models for the metastatic potential of lung SQCC; furthermore, we identified metabolites and intact lipid species relevant to lung SQCC metastatic potential that may serve as potential therapeutic targets for the inhibition of lung SQCC metastasis.


2021 ◽  
Author(s):  
Peiwu Cui ◽  
Yunhai Shao ◽  
Yanxin Wang ◽  
Rui Zhao ◽  
Huihui Zhan ◽  
...  

Abstract Purpose To explore a competitive PHB producing fermentation process, this study evaluated the potential for Methylobacterium sp. XJLW to produce simultaneously PHB and coenzyme Q 10 (CoQ 10 ) using cheap and abundant methanol as sole carbon and energy source. Methods The metabolic pathways of PHB and CoQ 10 biosynthesis in XJLW strain were first mined based on the genomic and comparative transcriptomics information. Then, Real-time fluorescence quantitative PCR (RT-qPCR) was employed for comparing the expression level of important genes involved in PHB and CoQ10 synthesis pathways response to methanol and glucose. Transmission electron microscope (TEM), gas chromatography/mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), Fourier transformation infrared spectrum (FT-IR), and liquid chromatography/mass spectrometry (LC-MS) methods, were used to elucidate the yield and structure of PHB and CoQ 10 , respectively. PHB and CoQ 10 productivity of XJLW strain were evaluated in flasks for medium optimization, and in a 5-L bioreactor for methanol fed-batch strategy according to dissolved oxygen (DO) and pH control. Results Comparative genomics and transcriptomics analysis showed that the PHB and CoQ 10 biosynthesis pathways coexist in XJLW strain, and the transcription level of key genes in both pathways response to methanol was significantly higher than that response to glucose. Correspondingly, strain XJLW can produce PHB and CoQ 10 simultaneously with higher yield using cheap and abundant methanol than using glucose as sole carbon and energy source. The isolated products showed the structure characteristics same to that of standard PHB and CoQ 10 . The optimal medium and cultural conditions for PHB and CoQ 10 co-production by XJLW strain was in M3 medium containing 1% (v/v) of methanol, 0.5 g/L of ammonium sulfate, 0.1% (v/v) of Tween 80, and 1.0 g/L of sodium chloride, under 30°C and pH 7.0. In a 5-L bioreactor coupled with methanol fed-batch process, a maximum DCW value (46.31 g/L) with the highest yields of PHB and CoQ 10 , reaching 6.94 g/L and 22.28 mg/L, respectively. Conclusion Methylobacterium sp. XJLW is potential for efficiently co-producing PHB and CoQ 10 employing methanol as sole carbon and energy source. However, it is still necessary to further optimize fermentation process, and genetically modify strain pathway, for enhanced production of PHB and CoQ 10 simultaneously by XJLW. It also suggests a potential strategy to develop efficiently co-producing other high value metabolites using methanol-based bio-process.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 830
Author(s):  
Aggeliki Kontou ◽  
Christina Virgiliou ◽  
Thomai Mouskeftara ◽  
Olga Begou ◽  
Thomas Meikopoulos ◽  
...  

Pregnant women are among the high-risk populations for COVID-19, whereas the risk of vertical transmission to the fetus is very low. Nevertheless, metabolic alternations described in COVID-19 patients may also occur in pregnant women and their offspring. We prospectively evaluated the plasma lipidomic and metabolomic profiles, soon after birth, in neonates born to infected mothers (cases, n = 10) and in the offspring of uninfected ones at delivery (controls, n = 10). All cases had two negative tests for SARS-CoV-2 (nasopharyngeal swabs) performed 72 h apart. Blood samples were obtained within the first hours after birth. Liquid chromatography-high resolution mass spectrometry (UHPLC-TOF/MS) and gas chromatography-mass spectrometry (GC-MS) were applied for the analyses. Multivariate statistical analysis was performed for data evaluation. Changes in several plasma lipid species-classes (long-chain fatty acids phosphatidylcholines, triglycerides), and amino-acids were identified that allowed for clear discrimination between the study groups. The results of this preliminary investigation suggest that neonates born to Sars-Cov-19 positive mothers, without evidence of viral infection at birth, have a distinct plasma lipidomic and metabolomic profile compared to those of uninfected mothers. Whether these findings are reflective of maternal metabolic alternations due to the virus or a metabolic response following an unidentified neonatal infection warrants further investigation.


2017 ◽  
Vol 14 (4) ◽  
pp. 1413-1428 ◽  
Author(s):  
K. Leela ◽  
C. Anchana Devi

ABSTRACT: Lichens are composite algae having a symbiotic association with a fungal partner. They produce numerous secondary metabolites, which play an important role in pharmaceutical and in other industrial applications. The Secondary metabolites produced by lichens are found to be 80% more when compared to that produced by other organisms. Not much work has been carried out on lichens due to the difficulty in their cultivation but still it emerges as a potential source in developing therapeutically important drugs which are widely beneficial in all fields of application. The Present study was aimed to isolate, purify and determine the applications of secondary metabolites from Lichen Parmelia perlata. The presence of these compounds were detected and purified by thin layer chromatography and column chromatography using specific solvent systems. The purified fractions were then identified by Gas chromatography-Mass spectrometry (GC-MS). The compounds were then subjected to application oriented studies such as antimicrobial activity, antioxidant activity and antidiabetic activity. Not much work have been carried out on the isolation of a specific glycoside and alkaloid compound from Lichen Parmelia perlata, so this study was an attempt to explore the applications of these individual compounds which could prove beneficial to the mankind for different purposes.


Author(s):  
Douglas Sachito ◽  
Luciana de Oliveira

Terpenes are the most abundant class of natural product that exist in nature. They possess a myriad of industrial applications including pharmaceutical, perfumery and flavors, bulk chemicals, and fuel. Intriguingly, until today, the vast majority of characterized terpenoids have been isolated from plants and fungi, and only in recent years bacteria were found to generate a representative reservoir of terpenoids molecules. Mining Streptomyces sp. CBMAI 2042 genome data has revealed the presence of five terpene cyclase genes. Chemical analysis of mycelium extract of this bacteria strain has unveiled at least 28 volatile terpenes molecules, where three encoding sesquiterpene cyclase (STC) genes are apparently responsible for their biosynthesis. The cyclic products obtained by incubation of these three purified recombinant STCs with farnesyl diphosphate (FPP) were analyzed by gas chromatography-mass spectrometry (GC-MS) and identified using the Van den Dool and Kratz equation.


Sign in / Sign up

Export Citation Format

Share Document