scholarly journals Polar lipidomic profile shows Chlorococcum amblystomatis as a promising source of value-added lipids

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiago A. Conde ◽  
Daniela Couto ◽  
Tânia Melo ◽  
Margarida Costa ◽  
Joana Silva ◽  
...  

AbstractThere is a growing trend to explore microalgae as an alternative resource for the food, feed, pharmaceutical, cosmetic and fuel industry. Moreover, the polar lipidome of microalgae is interesting because of the reports of bioactive polar lipids which could foster new applications for microalgae. In this work, we identified for the first time the Chlorococcum amblystomatis lipidome using hydrophilic interaction liquid chromatography-high resolution electrospray ionization- tandem mass spectrometry (HILIC–HR–ESI–MS/MS). The Chlorococcum amblystomatis strain had a lipid content of 20.77% and the fatty acid profile, determined by gas chromatography-mass spectrometry, has shown that this microalga contains high amounts of omega-3 polyunsaturated fatty acids (PUFAs). The lipidome identified included 245 molecular ions and 350 lipid species comprising 15 different classes of glycolipids (6), phospholipids (7) and betaine lipids (2). Of these, 157 lipid species and the main lipid species of each class were esterified with omega-3 PUFAs. The lipid extract has shown antioxidant activity and anti-inflammatory potential. Lipid extracts also had low values of atherogenic (0.54) and thrombogenic index (0.27). In conclusion, the lipid extracts of Chlorococcum amblystomatis have been found to be a source of lipids rich in omega-3 PUFAs for of great value for the food, feed, cosmetic, nutraceutical and pharmaceutical industries.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
YuJin Noh ◽  
Hwanhui Lee ◽  
Myeongsun Kim ◽  
Seong-Joo Hong ◽  
Hookeun Lee ◽  
...  

Synechocystis strains are cyanobacteria that can produce useful biomaterials for biofuel and pharmaceutical resources. In this study, the effects of exogenous glucose (5-mM) on cell growth, photosynthetic pigments, metabolites, and lipids in Synechocystis sp. PCC 7338 (referred to as Synechocystis 7338) were investigated. Exogenous glucose increased cell growth on days 9 and 18. The highest production (mg/L) of chlorophyll a (34.66), phycocyanin (84.94), allophycocyanin (34.28), and phycoerythrin (6.90) was observed on day 18 in Synechocystis 7338 culture under 5-mM glucose. Alterations in metabolic and lipidomic profiles under 5-mM glucose were investigated using gas chromatography-mass spectrometry (MS) and nanoelectrospray ionization-MS. The highest production (relative intensity/L) of aspartic acid, glutamic acid, glycerol-3-phosphate, linolenic acid, monogalactosyldiacylglycerol (MGDG) 16:0/18:1, MGDG 16:0/20:2, MGDG 18:1/18:2, neophytadiene, oleic acid, phosphatidylglycerol (PG) 16:0/16:0, and PG 16:0/17:2 was achieved on day 9. The highest production of pyroglutamic acid and sucrose was observed on day 18. We suggest that the addition of exogenous glucose to Synechocystis 7338 culture could be an efficient strategy for improving growth of cells and production of photosynthetic pigments, metabolites, and intact lipid species for industrial applications.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 335 ◽  
Author(s):  
Elisabete da Costa ◽  
Pedro Domingues ◽  
Tânia Melo ◽  
Elisabete Coelho ◽  
Rui Pereira ◽  
...  

Fucus vesiculosus is an edible brown macroalga, with health benefits associated with its consumption and also a source of bioactive molecules. It is acknowledged that the biochemical composition of macroalgae changes when exposed to different environmental conditions occurring on different habitats, such as the water temperature, and light intensity. In the present study, the polar lipidome of Fucus vesiculosus was characterized for the first time using modern high-resolution HILIC–MS, and MS/MS approaches, to evaluate the phenotypic variability in two seasons of the year, e.g., winter and spring. A total of 187 molecular species were identified over eighteen classes of glycolipids, phospholipids and betaine lipids. Principal component analysis (PCA) multivariate statistical analysis and cluster analysis of polar lipid classes, polar lipid species and total fatty acids (FA) datasets, showed clustering according to the seasonal groups. While the lipid profile of Fucus vesiculosus harvested in the winter and spring yielded the same molecular species, the relative abundance of these species was significantly different. In the winter, changes were mainly due to the increased relative abundance of some molecular species of glycolipids and phospholipids, bearing octadeca(poly)enoic (18:3, 18:4) and eicosa(poly)enoic (20:4, 20:5) FA and betaine lipids species with short saturated FA (14:0) and polyunsaturated FA (PUFA). Importantly, glycolipids with n-3 PUFA and sulfolipids, have been reported to have important biological activities and therapeutic value. Overall, Fucus vesiculosus is a promising source of bioactive compounds that can be used as functional food or ingredients for human nutrition, feed, pharma, and cosmetic formulations. In this study, samples harvested in the winter season maximized yields of these bioactive components, when compared with samples harvested in the spring.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 416 ◽  
Author(s):  
Alexandros Tsoupras ◽  
Eoin O’Keeffe ◽  
Ronan Lordan ◽  
Shane Redfern ◽  
Ioannis Zabetakis

Marine polar lipids (PLs) have exhibited promising cardioprotection. In this study, marine by-products such as salmon heads (SHs), their brain, eyes and main optic nerves (SBEON), and head-remnants after SBEON removal (RemSH), as well as herring fillets (HFs), herring heads (HHs) and minced boarfish (MB), were evaluated as potential sustainable sources of such bioactive PLs. The antithrombotic bioactivities of PLs derived from these marine by-products were assessed for the first time in human platelets against platelet-activating factor (PAF), thrombin, collagen, and adenosine diphosphate (ADP), while their fatty acid composition was evaluated by gas chromatography–mass spectrometry (GC-MS). PLs from all marine by-products tested possess strong antithrombotic activities against aggregation of human platelets induced by all platelet agonists tested. RemSH, SBEON, HHs, HFs, and MB exhibited strong anti-PAF effects, similar to those previously reported for salmon fillets. PLs from MB had the strongest anti-collagen effects and PLs from SHs and SBEON were the most active against thrombin and ADP. PLs from HHs had similar antithrombotic effects with those from HFs in all agonists. RemSH was less active in all agonists, suggesting that SBEON is the main source of bioactive PLs in SHs. All PLs were rich in omega-3 polyunsaturated fatty acids (ω3PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid, with favourable low values of the ω6/ω3 ratio. Salmon, herring, and boarfish by-products are rich sources of bioactive marine PLs with potent antithrombotic and cardioprotective properties.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4179
Author(s):  
Heayyean Lee ◽  
Hwanhui Lee ◽  
Sujeong Park ◽  
Myeongsun Kim ◽  
Ji Young Park ◽  
...  

SQCC is a major type of NSCLC, which is a major cause of cancer-related deaths, and there were no reports regarding the prediction of metastatic potential of lung SQCC by metabolomic and lipidomic profiling. In this study, metabolomic and lipidomic profiling of lung SQCC were performed to predict its metastatic potential and to suggest potential therapeutic targets for the inhibition of lung SQCC metastasis. Human bronchial epithelial cells and four lung SQCC cell lines with different metastatic potentials were analyzed using gas chromatography–mass spectrometry and direct infusion-mass spectrometry. Based on the obtained metabolic and lipidomic profiles, we constructed models to predict the metastatic potential of lung SQCC; glycerol, putrescine, β-alanine, hypoxanthine, inosine, myo-inositol, phosphatidylinositol (PI) 18:1/18:1, and PI 18:1/20:4 were suggested as characteristic metabolites and intact lipid species associated with lung SQCC metastatic potential. In this study, we established predictive models for the metastatic potential of lung SQCC; furthermore, we identified metabolites and intact lipid species relevant to lung SQCC metastatic potential that may serve as potential therapeutic targets for the inhibition of lung SQCC metastasis.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1179 ◽  
Author(s):  
Ramesh Kumar Saini ◽  
Min-Ho Song ◽  
Kannan R. R. Rengasamy ◽  
Eun-Young Ko ◽  
Young-Soo Keum

This study was aimed at comparatively analyzing the sterols, tocopherols and fatty acids from edible flesh and processing waste obtained from three shrimp species, utilizing rapid liquid chromatography (LC)-atmospheric-pressure chemical ionization (APCI)-tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC-MS). Results revealed the presence of significantly (p < 0.05) high proportions of health-beneficial omega-3 (n3) polyunsaturated fatty acids (PUFAs) in Argentine red shrimp (34.3% in waste and 38.2% in the flesh), compared to black tiger shrimp (16.5–24.2%) and whiteleg shrimp (13.2–22.6%). Among sterols, cholesterol was found most dominant, accounting in the range 349.4 (white shrimp flesh) to 559.3 µg/g fresh weight (FW) (black shrimp waste). Surprisingly, waste was found to contain a substantially higher amount of α-tocopherol, for instance, 21.7 µg/g FW in edible flesh and 35.3 µg/g FW in the waste of black tiger shrimp. The correlation analysis indicated that shrimp with low total contents of lipids might have higher proportions of health-beneficial long-chain (LC)-n3-PUFAs eicosapentaenoic (EPA) and docosahexaenoic acid (DHA). The fat quality indices, including the high ratios of hypocholesterolemic (h)/hypercholesterolemic (H) fatty acids, and lowest values of the atherogenic index (AI) and thrombogenic index (TI) indicated the health-beneficial potential associated with fat intake from red shrimp. Overall, a significant amount of health-beneficial compounds in edible flesh of studied shrimp confers its extraordinary nutritional benefits. Moreover, considering the richness of processing waste with these compounds, their valorization can be prompted.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 830
Author(s):  
Aggeliki Kontou ◽  
Christina Virgiliou ◽  
Thomai Mouskeftara ◽  
Olga Begou ◽  
Thomas Meikopoulos ◽  
...  

Pregnant women are among the high-risk populations for COVID-19, whereas the risk of vertical transmission to the fetus is very low. Nevertheless, metabolic alternations described in COVID-19 patients may also occur in pregnant women and their offspring. We prospectively evaluated the plasma lipidomic and metabolomic profiles, soon after birth, in neonates born to infected mothers (cases, n = 10) and in the offspring of uninfected ones at delivery (controls, n = 10). All cases had two negative tests for SARS-CoV-2 (nasopharyngeal swabs) performed 72 h apart. Blood samples were obtained within the first hours after birth. Liquid chromatography-high resolution mass spectrometry (UHPLC-TOF/MS) and gas chromatography-mass spectrometry (GC-MS) were applied for the analyses. Multivariate statistical analysis was performed for data evaluation. Changes in several plasma lipid species-classes (long-chain fatty acids phosphatidylcholines, triglycerides), and amino-acids were identified that allowed for clear discrimination between the study groups. The results of this preliminary investigation suggest that neonates born to Sars-Cov-19 positive mothers, without evidence of viral infection at birth, have a distinct plasma lipidomic and metabolomic profile compared to those of uninfected mothers. Whether these findings are reflective of maternal metabolic alternations due to the virus or a metabolic response following an unidentified neonatal infection warrants further investigation.


2021 ◽  
Vol 13 (2) ◽  
pp. 443-449
Author(s):  
Avijit Kar ◽  
Deep Sankar Chini ◽  
Manojit Bhattacharya ◽  
Bidhan Chandra Patra ◽  
Shampa Patra ◽  
...  

Freshwater fishes are not only a major source of protein but they also possess nutritionally valuable lipids in the form of Polyunsaturated fatty acids (PUFAs), which play a crucial role in the normal growth, disease prevention, development, cardiovascular health and reproduction of human. The present study was performed to determine the incorporation rate of fatty acids profile and their composition in two common freshwater carps as Gibelion catla and Cirrhinus mrigala (in situ trial and experimental) in the different experimental time period (0 days, i.e. initial, 90 days and 180 days) by using of value added feed like flaxseed (?-linolenic acids, 51.26% – 54.94%) and soybean oil (?-linolenic acids, 7.95%-9.01%) as omega-3 supplements. To determine the specific growth pattern Length-Weight Relationships (LWRs) are analyzed where it showed positive allometric growth (b=3.20 in 90 days, b=3.11 in 180 days for Catla and b=3.18 in 90 days, b=3.1 in 180 days for Mrigala fish). The Gas Chromatography-Mass Spectrometry (GC/MS) method also confirmed that the percentages of EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) increased significantly (P< 0.05) in experimental (0.096a±0.41, initial; 5.16a±0.27, 90 days; 6.21b±0.36, 180 days Catla fish species and 0.019a±0.96 initial; 3.74b±0.37, 90 days; 3.50a±0.46 180 days for Mrigal fish species) fishes rather than controls (4.28a±0.27, 90 days; 4.36b±0.36, 180 days for Catla species and 2.24b±0.31 90 days; 2.50a±0.11 180 days for Mrigal species). Therefore, it was clearly indicated that formulated diet performed significantly to maintain the positive allometric growth as well as successive enrichment of PUFAs in experimental specimens, which is beneficial for human health as high source of protein and PUFAs as well.


Holzforschung ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 951-960 ◽  
Author(s):  
Raziyeh Ghahremani ◽  
John A. Staser

AbstractLignin has been submitted to electrochemical oxidation in the presence of nickel (Ni), cobalt (Co) and Ni-Co bimetallic electrocatalysts, which were prepared by a simple electrochemical deposition process. The composition and morphology of the catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). The effects of the three electrocatalysts on the electrochemical oxidation of lignin were observed by cyclic voltammetry and chronoamperometry. The degradation products were quantitatively analyzed by gas chromatography-mass spectrometry (GC-MS). The rate of electrochemical oxidation of lignin is higher with Ni-Co bimetallic electrocatalyst with higher Co contents and the main products obtained were vanillin, apocynin and 3-methylbenzaldehyde.


Sign in / Sign up

Export Citation Format

Share Document