scholarly journals An Insight of RuBisCO Evolution through a Multilevel Approach

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1761
Author(s):  
Vladimir Camel ◽  
Gaston Zolla

RuBisCO is the most abundant enzyme on earth; it regulates the organic carbon cycle in the biosphere. Studying its structural evolution will help to develop new strategies of genetic improvement in order to increase food production and mitigate CO2 emissions. In the present work, we evaluate how the evolution of sequence and structure among isoforms I, II and III of RuBisCO defines their intrinsic flexibility and residue-residue interactions. To do this, we used a multilevel approach based on phylogenetic inferences, multiple sequence alignment, normal mode analysis, and molecular dynamics. Our results show that the three isoforms exhibit greater fluctuation in the loop between αB and βC, and also present a positive correlation with loop 6, an important region for enzymatic activity because it regulates RuBisCO conformational states. Likewise, an increase in the flexibility of the loop structure between αB and βC, as well as Lys330 (form II) and Lys322 (form III) of loop 6, is important to increase photosynthetic efficiency. Thus, the cross-correlation dynamics analysis showed changes in the direction of movement of the secondary structures in the three isoforms. Finally, key amino acid residues related to the flexibility of the RuBisCO structure were indicated, providing important information for its enzymatic engineering.

Author(s):  
Mst Rubaiat Nazneen Akhand ◽  
Kazi Faizul Azim ◽  
Syeda Farjana Hoque ◽  
Mahmuda Akther Moli ◽  
Bijit Das Joy ◽  
...  

AbstractSARS-CoV-2 is known to infect the neurological, respiratory, enteric, and hepatic systems of human and has already become an unprecedented threat to global healthcare system. COVID-19, the most serious public condition caused by SARS-CoV-2 leads the world to an uncertainty alongside thousands of regular death scenes. Unavailability of specific therapeutics or approved vaccine has made the recovery of COVI-19 more troublesome and challenging. The present in silico study aimed to predict a novel chimeric vaccines by simultaneously targeting four major structural proteins via the establishment of ancestral relationship among different strains of coronaviruses. Conserved regions from the homologous protein sets of spike glycoprotein (S), membrane protein (M), envelope protein and nucleocapsid protein (N) were identified through multiple sequence alignment. The phylogeny analyses of whole genome stated that four proteins (S, E, M and N) reflected the close ancestral relation of SARS-CoV-2 to SARS-COV-1 and bat coronavirus. Numerous immunogenic epitopes (both T cell and B cell) were generated from the common fragments which were further ranked on the basis of antigenicity, transmembrane topology, conservancy level, toxicity and allergenicity pattern and population coverage analysis. Top putative epitopes were combined with appropriate adjuvants and linkers to construct a novel multiepitope subunit vaccine against COVID-19. The designed constructs were characterized based on physicochemical properties, allergenicity, antigenicity and solubility which revealed the superiority of construct V3 in terms safety and efficacy. Essential molecular dynamics and Normal Mode analysis confirmed minimal deformability of the refined model at molecular level. In addition, disulfide engineering was investigated to accelerate the stability of the protein. Molecular docking study ensured high binding affinity between construct V3 and HLA cells, as well as with different host receptors. Microbial expression and translational efficacy of the constructs were checked using pET28a(+) vector of E. coli strain K12. The development of preventive measures to combat COVID-19 infections might be aided the present study. However, the in vivo and in vitro validation might be ensured with wet lab trials using model animals for the implementation of the presented data.


2020 ◽  
Author(s):  
Abhishek Das ◽  
M. Bhattacharya ◽  
R. Roy ◽  
P.Ghosh ◽  
N.Mondal ◽  
...  

Abstract A new beta Coronavirus (SARS-CoV-2) infection was first identified in the Wuhan City, China in December 2019 and after that it had spread rapidly throughout the globe and subsequently WHO have announced it as a pandemic. So, SARS-CoV-2 has now become a global threat to human civilization. Recent studies showed that the proteomic data of SARS-CoV-2 is closely related with other beta Coronavirus. The phylogenetic tree revealed the closeness of recently reported SAR-CoV2 with SARS-CoV by using MEGA 7 along with the suitable protocol of Neighbor joining algorithm. The spike glycoprotein plays the most important role during the onset of infection. Several mutations have been reported across the globe in the S Proteins. In this research, molecular docking between the SARS-CoV-2 spike glycoprotein and ACE2 protein was carried out in PatchDock web servers. WEBnm@ calculated the molecular simulation using Normal Mode Analysis (NMA) along with lowest deformation energy value which signifies the domain motions. Also during multiple sequence analysis, variations were observed within the Spike protein reported globally. 3- Dimensional structure of protein molecules were designed using homology modeling and the structure were validated through Q mean score and Ramachandran plot. All of the designed sequences were having around 91% of the amino acid in the favored region of Ramachandran plot. In order to check the binding affinity difference between the mutated and non-mutated strains, the generated models were docked with human ACE2 molecules. The non mutated strains have given the similar ACE value. However, there were variations in ACE value of the mutated strains. This observation provides evidence of Phylogenetic diversity and evolution.


2019 ◽  
Author(s):  
David Wright ◽  
Fouad Husseini ◽  
Shunzhou Wan ◽  
Christophe Meyer ◽  
Herman Van Vlijmen ◽  
...  

<div>Here, we evaluate the performance of our range of ensemble simulation based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) for use in fragment based drug design scenarios. ESMACS is designed to generate reproducible binding affinity predictions from the widely used molecular mechanics Poisson-Boltzmann surface area (MMPBSA) approach. We study ligands designed to target two binding pockets in the lactate dehydogenase A target protein, which vary in size, charge and binding mode. When comparing to experimental results, we obtain excellent statistical rankings across this highly diverse set of ligands. In addition, we investigate three approaches to account for entropic contributions not captured by standard MMPBSA calculations: (1) normal mode analysis, (2) weighted solvent accessible surface area (WSAS) and (3) variational entropy. </div>


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


2001 ◽  
Vol 15 (28n30) ◽  
pp. 3865-3868 ◽  
Author(s):  
H. MIYAOKA ◽  
T. KUZE ◽  
H. SANO ◽  
H. MORI ◽  
G. MIZUTANI ◽  
...  

We have obtained the Raman spectra of TiCl n (n= 2, 3, and 4). Assignments of the observed Raman bands were made by a normal mode analysis. The force constants were determined from the observed Raman band frequencies. We have found that the Ti-Cl stretching force constant increases as the oxidation number of the Ti species increases.


2020 ◽  
Vol 153 (21) ◽  
pp. 215103
Author(s):  
Alexander Klinger ◽  
Dominik Lindorfer ◽  
Frank Müh ◽  
Thomas Renger

2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

1971 ◽  
Vol 5 (2) ◽  
pp. 239-263 ◽  
Author(s):  
Z. Sedláček

Small amplitude electrostatic oscillations in a cold plasma with continuously varying density have been investigated. The problem is the same as that treated by Barston (1964) but instead of his normal-mode analysis we employ the Laplace transform approach to solve the corresponding initial-value problem. We construct the Green function of the differential equation of the problem to show that there are branch-point singularities on the real axis of the complex frequency-plane, which correspond to the singularities of the Barston eigenmodes and which, asymptotically, give rise to non-collective oscillations with position-dependent frequency and damping proportional to negative powers of time. In addition we find an infinity of new singularities (simple poles) of the analytic continuation of the Green function into the lower half of the complex frequency-plane whose position is independent of the spatial co-ordinate so that they represent collective, exponentially damped modes of plasma oscillations. Thus, although there may be no discrete spectrum, in a more general sense a dispersion relation does exist but must be interpreted in the same way as in the case of Landau damping of hot plasma oscillations.


2016 ◽  
Vol 120 (33) ◽  
pp. 8276-8288 ◽  
Author(s):  
Xin-Qiu Yao ◽  
Lars Skjærven ◽  
Barry J. Grant

2015 ◽  
Vol 81 (6) ◽  
Author(s):  
Y. W. Hou ◽  
M. X. Chen ◽  
M. Y. Yu ◽  
B. Wu

The transient, growth and nonlinear saturation stages in the evolution of the electrostatic two-stream instabilities as described by the Vlasov–Poisson system are reconsidered by numerically following the evolution of the total wave energy of the plasma oscillations excited from (numerical) noise. Except for peculiarities related to the necessarily finite (even though very small) magnitude of the perturbations in the numerical simulation, the existence and initial growth properties of the instabilities from the numerical results are found to be consistent with those from linear normal mode analysis and the Penrose criteria. However, contradictory to the traditional point of view, the growth of instability before saturation is not always linear. The initial stage of the growth can exhibit fine structures that can be attributed to the harmonics of the excited plasma oscillations, whose wavelengths are determined by the system size and the numerical noise. As expected, saturation of the unstable oscillations is due to electron trapping when they reach sufficiently large amplitudes.


Sign in / Sign up

Export Citation Format

Share Document