scholarly journals Effects of Low-Dose Atorvastatin on the Peripheral BloodMononuclear Cell Secretion of Angiogenic Factors in Type 2 Diabetes

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1885
Author(s):  
Anna Wesołowska ◽  
Hanna Winiarska ◽  
Jakub Owoc ◽  
Magdalena Borowska ◽  
Joanna Domagała ◽  
...  

The aim of this study was to investigate the influence of statins on the secretion of angiogenesis mediators by the peripheral blood mononuclear cells (PBMCs) derived from patients suffering from type 2 diabetes. The study group comprised 30 participants and included: 10 statin-treated patients with diabetes, 10 statin-free diabetic subjects, and 10 statin-free non-diabetic individuals. PBMCs isolated from the blood were cultured in vitro in standard conditions and in an environment mimicking hyperglycemia. Culture supernatants were evaluated for VEGF, MCP-1, Il-10, and Il-12 by flow cytometry using commercial BDTM. Cytometric Bead Array tests. The secretion of VEGF, MCP-1 and Il-12 by PBMCs, cultured both in standard and hyperglycemic conditions, was significantly lower in the statin-treated patients with type 2 diabetes in comparison with the statin-free diabetic patients. Conversely, the secretion of Il-10 was higher in the statin-treated than in the statin-free diabetic patients. VEGF, MCP-1 and Il-12 levels in PBMCs supernatants from the glucose-containing medium were higher than those from the standard medium in each of the diabetic groups. The results of the study suggest that statins in low doses exhibit an antiangiogenic activity, reducing the secretion of potent proangiogenic factors, such as VEGF and MCP-1, and increasing the secretion of antiangiogenic Il-10 by PBMCs, also under hyperglycemic conditions characteristic for type 2 diabetes.

2019 ◽  
Vol 12 (2) ◽  
pp. 152-162 ◽  
Author(s):  
Min He ◽  
Nan Wu ◽  
Man Cheong Leong ◽  
Weiwei Zhang ◽  
Zi Ye ◽  
...  

Abstract Chronic inflammation plays a pivotal role in insulin resistance and type 2 diabetes, yet the mechanisms are not completely understood. Here, we demonstrated that serum LPS levels were significantly higher in newly diagnosed diabetic patients than in normal control. miR-145 level in peripheral blood mononuclear cells decreased in type 2 diabetics. LPS repressed the transcription of miR-143/145 cluster and decreased miR-145 levels. Attenuation of miR-145 activity by anti-miR-145 triggered liver inflammation and increased serum chemokines in C57BL/6 J mice. Conversely, lentivirus-mediated miR-145 overexpression inhibited macrophage infiltration, reduced body weight, and improved glucose metabolism in db/db mice. And miR-145 overexpression markedly reduced plaque size in the aorta in ApoE−/− mice. Both OPG and KLF5 were targets of miR-145. miR-145 repressed cell proliferation and induced apoptosis partially by targeting OPG and KLF5. miR-145 also suppressed NF-κB activation by targeting OPG and KLF5. Our findings provide an association of the environment with the progress of metabolic disorders. Increasing miR-145 may be a new potential therapeutic strategy in preventing and treating metabolic diseases such as type 2 diabetes and atherosclerosis.


2006 ◽  
Vol 124 (4) ◽  
pp. 219-222 ◽  
Author(s):  
Maria Cristina Foss-Freitas ◽  
Norma Tiraboschi Foss ◽  
Eduardo Antonio Donadi ◽  
Milton Cesar Foss

CONTEXT AND OBJECTIVE: Diabetes mellitus is a clinical syndrome that frequently leads to the development of chronic complications and high susceptibility to infections. It is probably due to defective immunological defense, which may be related to metabolic control of the disease. The aim of this study was to evaluate the effect of metabolic control on immune-cell behavior in type 1 and type 2 diabetic patients. For this, the in vitro proliferation of peripheral blood mononuclear cells (PBMC) was analyzed in patients with inadequate and adequate metabolic control. DESIGN AND SETTING: Experimental/laboratory study at a university hospital. METHODS: Eleven type 1 and thirteen type 2 diabetic patients were studied, together with 21 healthy individuals divided in two groups (11/10), who were matched by sex and age with those diabetic patients. PBMC cultures stimulated with concanavalin-A (Con-A) were used to measure ³H-thymidine incorporation after 72 hours of cell culturing. For patients with inadequate metabolic control, culturing was performed on the first day of patient hospitalization and again after intensive treatment to achieve adequate control. RESULTS: The proliferation index for Con-A-stimulated cultures from type 1 diabetic patients was significantly greater than that for cultures from healthy individuals and type 2 diabetic patients, independent of metabolic control. A negative correlation between the proliferation cell index and body mass index and serum C-reactive protein levels was also observed. CONCLUSION: The increase in the proliferation capacity of type 1 diabetic T lymphocytes was probably not caused by hyperglycemia and/or insulinopenia related to inadequate metabolic control.


Author(s):  
Kimberly To ◽  
Ruoqiong Cao ◽  
Aram Yegiazaryan ◽  
James Owens ◽  
Timothy Nguyen ◽  
...  

The World Health Organization (WHO) has identified type 2 diabetes (T2DM) as a neglected, important, and re-emerging risk factor for tuberculosis (TB), especially in low and middle-income countries where TB is endemic. In this clinical trial study, oral liposomal glutathione supplementation (L-GSH) or placebo was given to individuals with T2DM to investigate the therapeutic effects of L-GSH supplementation. We report that L-GSH supplementation for 3 months in people with T2DM was able to reduce the levels of oxidative stress in all blood components and prevent depletion of glutathione (GSH) in this population known to be GSH deficient. Additionally, L-GSH supplementation significantly reduced the burden of intracellular mycobacteria within in vitro granulomas generated from peripheral blood mononuclear cells (PBMCs) of T2DM subjects. L-GSH supplementation also increased the levels of Th1-associated cytokines, IFN-γ, TNF-α, and IL-2 and decreased levels of IL-6 and IL-10. In conclusion our studies indicate that oral L-GSH supplementation in individuals with T2DM for three months was able to maintain the levels of GSH, reduce oxidative stress, and diminish mycobacterial burden within in vitro generated granulomas of diabetics. L-GSH supplementation for 3 months in diabetics was also able to modulate the levels of various cytokines.


2011 ◽  
Vol 101 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Aynur Gulcan ◽  
Erim Gulcan ◽  
Sukru Oksuz ◽  
Idris Sahin ◽  
Demet Kaya

Background: We sought to determine the frequency of toenail onychomycosis in diabetic patients, to identify the causative agents, and to evaluate the epidemiologic risk factors. Methods: Data regarding patients’ diabetic characteristics were recorded by the attending internal medicine clinician. Clinical examinations of patients’ toenails were performed by a dermatologist, and specimens were collected from the nails to establish the onycomycotic abnormality. All of the specimens were analyzed by direct microscopy and culture. Results: Of 321 patients with type 2 diabetes mellitus, clinical onychomycosis was diagnosed in 162; 41 of those diagnoses were confirmed mycologically. Of the isolated fungi, 23 were yeasts and 18 were dermatophytes. Significant correlations were found between the frequency of onychomycosis and retinopathy, neuropathy, obesity, family history, and duration of diabetes. However, no correlation was found with sex, age, educational level, occupation, area of residence, levels of hemoglobin A1c and fasting blood glucose, and nephropathy. The most frequently isolated agents from clinical specimens were yeasts. Conclusions: Long-term control of glycemia to prevent chronic complications and obesity and to promote education about the importance of foot and nail care should be essential components in preventing onychomycosis and its potential complications, such as secondary foot lesions, in patients with diabetes mellitus. (J Am Podiatr Med Assoc 101(1): 49–54, 2011)


2004 ◽  
Vol 5 (2) ◽  
pp. 163-169 ◽  
Author(s):  
A. E. Buchs ◽  
A. Kornberg ◽  
M. Zahavi ◽  
D. Aharoni ◽  
C. Zarfati ◽  
...  

The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P= .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P= .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P= .003). It increased 3-fold in both groups after stimulation (P= .001). TF antigen (pg/106PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P= .02). Stimulation tripled TF antigen in both groups of patients (P= .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D.


2018 ◽  
Vol 315 (6) ◽  
pp. R1210-R1219 ◽  
Author(s):  
Étienne Myette-Côté ◽  
Cody Durrer ◽  
Helena Neudorf ◽  
Tyler D. Bammert ◽  
José Diego Botezelli ◽  
...  

Lowering carbohydrate consumption effectively lowers glucose, but impacts on inflammation are unclear. The objectives of this study were to: 1) determine whether reducing hyperglycemia by following a low-carbohydrate, high-fat (LC) diet could lower markers of innate immune cell activation in type 2 diabetes (T2D) and 2) examine if the combination of an LC diet with strategically timed postmeal walking was superior to an LC diet alone. Participants with T2D ( n = 11) completed a randomized crossover study involving three 4-day diet interventions: 1) low-fat low-glycemic index (GL), 2) and 3) LC with 15-min postmeal walks (LC+Ex). Four-day mean glucose was significantly lower in the LC+Ex group as compared with LC (−5%, P < 0.05), whereas both LC+Ex (−16%, P < 0.001) and LC (−12%, P < 0.001) conditions were lower than GL. A significant main effect of time was observed for peripheral blood mononuclear cells phosphorylated c-Jun N-terminal kinase ( P < 0.001), with decreases in all three conditions (GL: −32%, LC: −45%, and LC+Ex: −44%). A significant condition by time interaction was observed for monocyte microparticles ( P = 0.040) with a significant decrease in GL (−76%, P = 0.035) and a tendency for a reduction in LC (−70%, P = 0.064), whereas there was no significant change in LC+Ex (0.5%, P = 0.990). Both LC (−27%, P = 0.001) and LC+Ex (−35%, P = 0.005) also led to significant reductions in circulating proinsulin. An LC diet improved 4-day glycemic control and fasting proinsulin levels when compared with GL, with added glucose-lowering benefits when LC was combined with postmeal walking.


Author(s):  
Atsushi Satomura ◽  
Yoichi Oikawa ◽  
Akifumi Haisa ◽  
Seiya Suzuki ◽  
Shunpei Nakanishi ◽  
...  

Abstract Context Unprovoked A−β+ ketosis-prone type 2 diabetes (KPD) is characterized by the sudden onset of diabetic ketosis/ketoacidosis (DK/DKA) without precipitating factors, negative anti-islet autoantibodies (“A−”), and preservation of β-cell function (“β+”) after recovery from DKA. Although this phenotype often appears with acute hyperglycemia and DK/DKA just like acute-onset type 1 diabetes (AT1D), the involvement of anti-islet immune responses remains unknown. Objective We sought to clarify the immunological role of insulin-associated molecules in unprovoked A−β+ KPD. Methods In this cross-sectional study, blood samples from 75 participants (42 with AT1D and 33 with KPD) were evaluated for interferon (IFN)-γ-secreting peripheral blood mononuclear cells (PBMCs) reactive to four insulin B-chain amino acid 9–23-related peptides (B:9–23rPep) using an enzyme-linked immunospot (ELISpot) assay. Results Overall, 36.4% (12/33) of KPD participants showed positive IFN-γ ELISpot assay results; the positivity rate in KPD was similar to that in AT1D (38.1%; 16/42) and significantly higher than the previously reported rate in type 2 diabetes (8%; 2/25; P &lt; 0.0167). Moreover, B:9–23rPep-specific IFN-γ-producing PBMC frequency was negatively correlated with age and ad lib serum C-peptide levels in all KPD participants and positively correlated with HbA1c level in KPD participants with positive IFN-γ ELISpot results. Conclusions These findings suggest the involvement of B:9–23rPep-specific IFN-γ-related immunoreactivity in the pathophysiology of some unprovoked A−β+ KPD. Moreover, increased immunoreactivity may reflect transiently decreased β-cell function and increased disease activity at the onset of DK/DKA, thereby playing a key role in DK/DKA development in this KPD phenotype.


2020 ◽  
Vol 117 (12) ◽  
pp. 6509-6520 ◽  
Author(s):  
Subham Basu ◽  
Mahesh Barad ◽  
Dipika Yadav ◽  
Arijit Nandy ◽  
Bidisha Mukherjee ◽  
...  

Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
François R. Jornayvaz ◽  
Benjamin Assouline ◽  
Jérôme Pugin ◽  
Karim Gariani

Abstract Background Detailed description of hyperglycemia management in diabetic patients infected with SARS-CoV-2 remain limited, although patients with diabetes show higher complication and mortality rate than patients without diabetes. Transient non-severe increased insulin requirement in patients hospitalized for medical conditions such as sepsis or myocardial infarction is a well-known phenomenon. However, extremely high-dose insulin requirement remains a very rarely reported entity. Here, we report the case of an extreme and transitory insulin requirement episode in a type 2 diabetic patient presenting an acute respiratory distress syndrome caused by SARS-CoV-2. Case presentation A 57-year-old man resident in Geneva, Switzerland, previously known for type 2 diabetes for 3 years was admitted for an aggravation of his dyspnea. His type 2 diabetes was treated only with metformin and his latest Hb1Ac was 6.1%. Chest CT SCAN showed a bilateral multilobar ground-glass opacification. Twenty-four hours after his admission he presented a worsening of dyspnea and severe hypoxemia requiring a transfer to the intensive care unit rapidly followed by oro-tracheal intubation for mechanical ventilation support. A bronchoalveolar lavage was performed and test of SARS-CoV-2 by RT-qPCR assay was positive. At day 3, he presented a rapidly progressive insulin requirement at a rate of up to 50 units/hour intravenous insulin aspart. Despite the high insulin doses, he maintained an elevated plasma glucose level at 270 mg/dL on average. His extremely high-dose insulin requirement “resolved” at day 9, and the insulin infusion rate was rapidly reduced. Conclusions This case may reflect a specific and profound impact of SARS-CoV-2 on metabolic homeostasis, in particular in diabetic patients that appear more prone to complications of COVID-19 infection. Yet, the mechanisms behind this remain to be elucidated. The optimal management of hyperglycemia of diabetic patients infected with SARS-CoV-2 has yet not be defined, however insulin remain the mainstay of treatment approach. Report of extreme dysregulation of chronic conditions such as diabetes in patients with COVID-19 may help clinicians to better take care of patients during the pandemic of SARS-CoV-2. To the best of our knowledge this is the first description of extremely high-dose insulin requirement in patient with COVID-19.


Sign in / Sign up

Export Citation Format

Share Document