scholarly journals p53-Mediated Molecular Control of Autophagy in Tumor Cells

Biomolecules ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 14 ◽  
Author(s):  
◽  

Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3040
Author(s):  
Zainab Hussain ◽  
Jeremy Nigri ◽  
Richard Tomasini

Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii18
Author(s):  
Masum Rahman ◽  
Ian E Olson ◽  
Rehan Saber ◽  
Jibo Zhang ◽  
Lucas P Carlstrom ◽  
...  

Abstract BACKGROUND Glioblastoma is a fatal infiltrative primary brain tumor, and standard care includes maximal safe surgical resection followed by radiation and Temozolomide (TMZ). Therapy-resistant residual cells persist in a latent state a long time before inevitable recurrence. Conventional radiation and Temozolomide (TMZ) treatment cause oxidative stress and DNA damage resulting senescent-like state of cell-cycle arrest. However, increasing evidence demonstrates escaping senescence leads to tumor recurrence. Thus, the ablation of senescent tumor cells after chemoradiation may be an avenue to limit tumor recurrence. METHODS 100uM TMZ for 7days or 10-20Gy radiation (cesium gamma radiator) was used for senescence induction in human glioblastoma in vitro and confirmed by SA-Beta gal staining and PCR. Replication arrest assessed by automated quantification of cellular confluence (Thermo Scientific Series 8000 WJ Incubator). We evaluated the IC50 for several senolytics targeting multiple SCAPs, including Dasatinib, Quercetin, AMG-232, Fisetin, Onalespib, Navitoclax, and A1331852, and in senescent vs. proliferating cells. RESULTS Among the senolytic tested, the Bcl-XL inhibitors A1331852 and Navitoclax both shown senolytic effect by selectively killing radiated, senescent tumor cells at lower concentrations as compared to 0Gy treated non-senescent cells. Across 12 GBM cell lines, IC50 for senescent cells was 6–500 times lower than non-senescent GBM(p< 0.005). Such differential sensitivity to Bcl-XL inhibition after radiation has also observed by BCL-XL knockdown in radiated glioma. CONCLUSION These findings suggest the potential to harness radiation-induced biology to ablate surviving quiescent cells and demonstrate Bcl-XL dependency as a potential vulnerability of surviving tumor cells after exposure to chemoradiation.


1990 ◽  
Vol 172 (4) ◽  
pp. 1217-1224 ◽  
Author(s):  
B Gansbacher ◽  
K Zier ◽  
B Daniels ◽  
K Cronin ◽  
R Bannerji ◽  
...  

To study the effects of localized secretion of cytokines on tumor progression, the gene for human interleukin 2 (IL-2) was introduced via retroviral vectors into CMS-5 cells, a weakly immunogenic mouse fibrosarcoma cell line of BALB/c origin. Secretion of low levels of IL-2 from the tumor cells abrogated their tumorigenicity and induced a long-lasting protective immune response against a challenge with a tumorigenic dose of parental CMS-5 cells. Co-injection of IL-2-producing CMS-5 cells with unmodified tumor cells inhibited tumor formation even when highly tumorigenic doses of CMS-5 cells were used. Cytolytic activity in mice injected with parental CMS-5 cells was transient and was greatly diminished 3 wk after injection, as commonly observed in tumor-bearing animals. However, in mice injected with IL-2-producing cells, tumor-specific cytolytic activity persisted at high levels for the duration of the observation period (at least 75 d). High levels of tumor-specific cytolytic activity could also be detected in parental CMS-5 tumor-bearing animals 18 d after inoculation with tumor cells, if IL-2-producing CMS-5 cells but not unmodified parental tumor cells were used as targets. These studies highlight the potential advantages of localized secretion of cytokines mediated via gene transfer to induce potent anti-tumor immune responses.


2021 ◽  
Vol 8 (11) ◽  
pp. 163
Author(s):  
Girdhari Rijal

An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.


2019 ◽  
Vol 3 (2) ◽  
pp. 18-22
Author(s):  
Isolde Riede

With the definition of four gene classes, all differences between tumor cells and normal cells can be explained. Proliferative mutations induce a shortcut, forcing the cell to divide. They allow replication without control, induce somatic pairing defects of chromosomes and genome instability. Intact Tumor Supressors or mutant Switch Functions can inhibit this process. Oncogene mutations optimize the growth of the cells.


2018 ◽  
Vol 115 (16) ◽  
pp. E3769-E3778 ◽  
Author(s):  
Carlos A. Orozco ◽  
Neus Martinez-Bosch ◽  
Pedro E. Guerrero ◽  
Judith Vinaixa ◽  
Tomás Dalotto-Moreno ◽  
...  

Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras-driven mouse model of PDA (Ela-KrasG12Vp53−/−) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050021 ◽  
Author(s):  
Sachin Kumar ◽  
Abdon Atangana

Cancer belongs to the class of diseases which is symbolized by out of control cells growth. These cells affect DNAs and damage them. There exist many treatments available in medical science as radiation therapy, targeted therapy, surgery, palliative care and chemotherapy. Chemotherapy is one of the most popular treatments which depends on the type, location and grade of cancer. In this paper, we are working on modeling and prediction of the effect of chemotherapy on cancer cells using a fractional differential equation by using the differential operator in Caputo’s sense. The presented model depicts the interaction between tumor, normal and immune cells in a tumor by using a system of four coupled fractional partial differential equations (PDEs). For this system, initial conditions of tumor cells and dimensions are taken in such a way that tumor is spread out enough in size and can be detected easily with the clinical machines. An operational matrix method with Genocchi polynomials is applied to study this system of fractional PDEs (FPDEs). An operational matrix for fractional differentiation is derived. Applying the collocation method and using this matrix, the nonlinear system is reduced to a system of algebraic equations, which can be solved using Newton iteration method. The salient features of this paper are the pictorial presentations of the numerical solution of the concerned equation for different particular cases to show the effect of fractional exponent on diffusive nature of immune cells, tumor cells, normal cells and chemotherapeutic drug and depict the interaction among immune cells, normal cells and tumor cells in a tumor site.


2020 ◽  
Vol 21 (21) ◽  
pp. 8344
Author(s):  
Peter Petzelbauer

Melanoma releases numerous tumor cells into the circulation; however, only a very small fraction of these cells is able to establish distant metastasis. Intravascular survival of circulating tumor cells is limited through hemodynamic forces and by the lack of matrix interactions. The extravasation step is, thus, of unique importance to establish metastasis. Similar to leukocyte extravasation, this process is under the control of adhesion molecule pairs expressed on melanoma and endothelial cells, and as for leukocytes, ligands need to be adequately presented on cell surfaces. Based on melanoma plasticity, there is considerable heterogeneity even within one tumor and one patient resulting in a mixture of invasive or proliferative cells. The molecular control for this switch is still ill-defined. Recently, the balance between two kinase pathways, p38 and JNK, has been shown to determine growth characteristics of melanoma. While an active JNK pathway induces a proliferative phenotype with reduced invasive features, an active p38/MK2 pathway results in an invasive phenotype and supports the extravasation step via the expression of molecules capable of binding to endothelial integrins. Therapeutic targeting of MK2 to prevent extravasation might reduce metastatic spread.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shahid Hussain ◽  
Bo Peng ◽  
Mathew Cherian ◽  
Jonathan W. Song ◽  
Dinesh K. Ahirwar ◽  
...  

The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a “pre-metastatic niche” like a “soil” in distant organs whereby circulating tumor cells “seed’ and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.


Sign in / Sign up

Export Citation Format

Share Document