scholarly journals The Biology of Glial Cells and Their Complex Roles in Alzheimer’s Disease: New Opportunities in Therapy

Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 93 ◽  
Author(s):  
Saif Nirzhor ◽  
Rubayat Khan ◽  
Sharmind Neelotpol

Even though Alzheimer’s disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.

Author(s):  
Saif Shahriar Rahman Nirzhor ◽  
Rubayat Islam Khan ◽  
Sharmind Neelotpol

Even though Alzheimer’s disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients


Author(s):  
Saif Shahriar Rahman Nirzhor ◽  
Rubayat Islam Khan ◽  
Sharmind Neelotpol

The pathogenesis of Alzheimer’s disease (AD) is very complicated and not well-understood. As more and more studies are performed with regards to this disease, new insights are coming to light. Much of the research in AD so far has been very neuron-oriented however, recent studies suggest that certain glial cells i.e. microglia, astrocytes, oligodendrocytes, and NG2 glia are linked to the pathogenesis of AD and may offer several potential therapeutic targets in the long-standing battle against AD. Glial cells are responsible for maintaining homeostasis (i.e. concentration of ions and neurotransmitters) within the neuronal environment of the central nervous system (CNS) and are crucial to the integrity of neurons. This review explores the (1) role of glial cells in AD pathogenesis, (2) complex functionalities of the components involved and (3) potential therapeutic targets that it could eventuate leading to a better quality of life for AD patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Ding ◽  
Jin Wang ◽  
Miaoxin Huang ◽  
Zhangpeng Chen ◽  
Jing Liu ◽  
...  

AbstractMicroglia play a key role in regulating synaptic remodeling in the central nervous system. Activation of classical complement pathway promotes microglia-mediated synaptic pruning during development and disease. CD47 protects synapses from excessive pruning during development, implicating microglial SIRPα, a CD47 receptor, in synaptic remodeling. However, the role of microglial SIRPα in synaptic pruning in disease remains unclear. Here, using conditional knock-out mice, we show that microglia-specific deletion of SIRPα results in decreased synaptic density. In human tissue, we observe that microglial SIRPα expression declines alongside the progression of Alzheimer’s disease. To investigate the role of SIRPα in neurodegeneration, we modulate the expression of microglial SIRPα in mouse models of Alzheimer’s disease. Loss of microglial SIRPα results in increased synaptic loss mediated by microglia engulfment and enhanced cognitive impairment. Together, these results suggest that microglial SIRPα regulates synaptic pruning in neurodegeneration.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elisa Ridolfi ◽  
Cinzia Barone ◽  
Elio Scarpini ◽  
Daniela Galimberti

In the last few years, genetic and biomolecular mechanisms at the basis of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) have been unraveled. A key role is played by microglia, which represent the immune effector cells in the central nervous system (CNS). They are extremely sensitive to the environmental changes in the brain and are activated in response to several pathologic events within the CNS, including altered neuronal function, infection, injury, and inflammation. While short-term microglial activity has generally a neuroprotective role, chronic activation has been implicated in the pathogenesis of neurodegenerative disorders, including AD and FTLD. In this framework, the purpose of this review is to give an overview of clinical features, genetics, and novel discoveries on biomolecular pathogenic mechanisms at the basis of these two neurodegenerative diseases and to outline current evidence regarding the role played by activated microglia in their pathogenesis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuanyuan Liang ◽  
Lin Wang

Alzheimer’s disease (AD) is the most common cause of senile dementia. Although AD research has made important breakthroughs, the pathogenesis of this disease remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a class of endogenous short sequence non-coding RNAs that indirectly inhibit translation or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs, including miR-126 and miR-132, show a progressive link to the neuroinflammatory signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to AD progression, similar to inflammation, and therefore may become potential diagnostic biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic targets for AD treatment. This review provides insights into the role of inflamma-miRNAs in AD, as well as an overview of general inflamma-miRNA biology, their implications in pathophysiology, and their potential roles as biomarkers and therapeutic targets.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 631
Author(s):  
Doaa M. Hanafy ◽  
Geoffrey E. Burrows ◽  
Paul D. Prenzler ◽  
Rodney A. Hill

With an increase in the longevity and thus the proportion of the elderly, especially in developed nations, there is a rise in pathological conditions that accompany ageing, such as neurodegenerative disorders. Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive and memory decline. The pathophysiology of the disease is poorly understood, with several factors contributing to its development, such as oxidative stress, neuroinflammation, cholinergic neuronal apoptotic death, and the accumulation of abnormal proteins in the brain. Current medications are only palliative and cannot stop or reverse the progression of the disease. Recent clinical trials of synthetic compounds for the treatment of AD have failed because of their adverse effects or lack of efficacy. Thus, there is impetus behind the search for drugs from natural origins, in addition to the discovery of novel, conventional therapeutics. Mints have been used traditionally for conditions relevant to the central nervous system. Recent studies showed that mint extracts and/or their phenolic constituents have a neuroprotective potential and can target multiple events of AD. In this review, we provide evidence of the potential role of mint extracts and their derivatives as possible sources of treatments in managing AD. Some of the molecular pathways implicated in the development of AD are reviewed, with focus on apoptosis and some redox pathways, pointing to mechanisms that may be modulated for the treatment of AD, and the need for future research invoking knowledge of these pathways is highlighted.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Simone Eggert ◽  
Stefan Kins ◽  
Kristina Endres ◽  
Tanja Brigadski

Abstract Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer’s disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer’s disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.


Sign in / Sign up

Export Citation Format

Share Document