scholarly journals Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism

Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 618 ◽  
Author(s):  
Dahae Lee ◽  
Da Lee ◽  
Sungyoul Choi ◽  
Jin Lee ◽  
Dae Jang ◽  
...  

In type 2 diabetes (T2D), insufficient secretion of insulin from the pancreatic β-cells contributes to high blood glucose levels, associated with metabolic dysregulation. Interest in natural products to complement or replace existing antidiabetic medications has increased. In this study, we examined the effect of Astragalus membranaceus extract (ASME) and its compounds 1–9 on glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. ASME and compounds 1–9 isolated from A. membranaceus stimulated insulin secretion in INS-1 cells without inducing cytotoxicity. A further experiment showed that compounds 2, 3, and 5 enhanced the phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ), which are associated with β-cell function and insulin secretion. The data suggest that two isoflavonoids (2 and 3) and a nucleoside (compound 5), isolated from the roots of A. membranaceus, have the potential to improve insulin secretion in β-cells, representing the first step towards the development of potent antidiabetic drugs.

Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 335 ◽  
Author(s):  
Dahae Lee ◽  
Buyng Su Hwang ◽  
Pilju Choi ◽  
Taejung Kim ◽  
Youngseok Kim ◽  
...  

Insulin plays a key role in glucose homeostasis and is hence used to treat hyperglycemia, the main characteristic of diabetes mellitus. Annulohypoxylon annulatum is an inedible ball-shaped wood-rotting fungus, and hypoxylon F is one of the major compounds of A. annulatum. The aim of this study is to evaluate the effects of hypoxylonol F isolated from A. annulatum on insulin secretion in INS-1 pancreatic β-cells and demonstrate the molecular mechanisms involved. Glucose-stimulated insulin secretion (GSIS) values were evaluated using a rat insulin ELISA kit. Moreover, the expression of proteins related to pancreatic β-cell metabolism and insulin secretion was evaluated using Western blotting. Hypoxylonol F isolated from A. annulatum was found to significantly enhance glucose-stimulated insulin secretion without inducing cytotoxicity. Additionally, hypoxylonol F enhanced insulin receptor substrate-2 (IRS-2) levels and activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Interestingly, it also modulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and pancreatic and duodenal homeobox 1 (PDX-1). Our findings showed that A. annulatum and its bioactive compounds are capable of improving insulin secretion by pancreatic β-cells. This suggests that A. annulatum can be used as a therapeutic agent to treat diabetes.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3266-3276 ◽  
Author(s):  
Kim Ravnskjaer ◽  
Michael Boergesen ◽  
Blanca Rubi ◽  
Jan K. Larsen ◽  
Tina Nielsen ◽  
...  

Abstract Fatty acids (FAs) are known to be important regulators of insulin secretion from pancreatic β-cells. FA-coenzyme A esters have been shown to directly stimulate the secretion process, whereas long-term exposure of β-cells to FAs compromises glucose-stimulated insulin secretion (GSIS) by mechanisms unknown to date. It has been speculated that some of these long-term effects are mediated by members of the peroxisome proliferator-activated receptor (PPAR) family via an induction of uncoupling protein-2 (UCP2). In this study we show that adenoviral coexpression of PPARα and retinoid X receptor α (RXRα) in INS-1E β-cells synergistically and in a dose- and ligand-dependent manner increases the expression of known PPARα target genes and enhances FA uptake and β-oxidation. In contrast, ectopic expression of PPARγ/RXRα increases FA uptake and deposition as triacylglycerides. Although the expression of PPARα/RXRα leads to the induction of UCP2 mRNA and protein, this is not accompanied by reduced hyperpolarization of the mitochondrial membrane, indicating that under these conditions, increased UCP2 expression is insufficient for dissipation of the mitochondrial proton gradient. Importantly, whereas expression of PPARγ/RXRα attenuates GSIS, the expression of PPARα/RXRα potentiates GSIS in rat islets and INS-1E cells without affecting the mitochondrial membrane potential. These results show a strong subtype specificity of the two PPAR subtypes α and γ on lipid partitioning and insulin secretion when systematically compared in a β-cell context.


2020 ◽  
Author(s):  
Akansha Mishra ◽  
Siming Liu ◽  
Joseph Promes ◽  
Mikako Harata ◽  
William Sivitz ◽  
...  

Perilipin 2 (PLIN2) is the lipid droplet (LD) protein in β cells that increases under nutritional stress. Down-regulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects β cell function under nutritional stress, PLIN2 was down-regulated in mouse β cells, INS1 cells, and human islet cells. β cell specific deletion of PLIN2 in mice on a high fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Down-regulation of PLIN2 in INS1 cells blunted GSIS after 24 h incubation with 0.2 mM palmitic acids. Down-regulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Down-regulation of PLIN2 decreased specific OXPHOS proteins in all three models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2 deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in β cells have an important role in preserving insulin secretion, β cell metabolism and mitochondrial function under nutritional stress.


2021 ◽  
Author(s):  
Ping Gu ◽  
Yuege Lin ◽  
Qi Wan ◽  
Dongming Su ◽  
Qun Shu

Background: Increased insulin production and secretion by pancreatic β-cells are important for ensuring the high insulin demand during gestation. However, the underlying mechanism of β-cell adaptation during gestation or in gestational diabetes mellitus (GDM) remains unclear. Oxytocin is an important physiological hormone in gestation and delivery, and it also contributes to the maintenance of β-cell function. The aim of this study was to investigate the role of oxytocin in β-cell adaptation during pregnancy. Methods: The relationship between the blood oxytocin level and pancreatic β-cell function in patients with GDM and healthy pregnant women was investigated. Gestating and non-gestating mice were used to evaluate the in vivo effect of oxytocin signal on β-cells during pregnancy. In vitro experiments were performed on INS-1 insulinoma cells. Results: The blood oxytocin levels were lower in patients with GDM than in healthy pregnant women and were associated with impaired pancreatic β-cell function. Acute administration of oxytocin increased insulin secretion in both gestating and non-gestating mice. A three-week oxytocin treatment promoted the proliferation of pancreatic β-cells and increased the β-cell mass in gestating but not non-gestating mice. Antagonism of oxytocin receptors by atosiban impaired insulin secretion and induced GDM in gestating but not non-gestating mice. Oxytocin enhanced glucose-stimulated insulin secretion, activated the mitogen-activated protein kinase pathway, and promoted cell proliferation in INS-1 cells. Conclusions: These findings provide strong evidence that oxytocin is needed for β-cell adaptation during pregnancy to maintain β-cell function, and lack of oxytocin could be associated with the risk of GDM.


2015 ◽  
Vol 35 (5) ◽  
pp. 1892-1904 ◽  
Author(s):  
Dan-dan Yin ◽  
Er-bao Zhang ◽  
Liang-hui You ◽  
Ning Wang ◽  
Lin-tao Wang ◽  
...  

Background: Increasing evidence indicates that long noncoding RNAs (IncRNAs) perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in β cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic β cell functioning both in vitro and in vivo. Methods: qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. Results: lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in β cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. Conclusion: Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic β cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic β cells.


2015 ◽  
Vol 309 (8) ◽  
pp. E715-E726 ◽  
Author(s):  
Susan J. Burke ◽  
Krisztian Stadler ◽  
Danhong Lu ◽  
Evanna Gleason ◽  
Anna Han ◽  
...  

Proinflammatory cytokines impact islet β-cell mass and function by altering the transcriptional activity within pancreatic β-cells, producing increases in intracellular nitric oxide abundance and the synthesis and secretion of immunomodulatory proteins such as chemokines. Herein, we report that IL-1β, a major mediator of inflammatory responses associated with diabetes development, coordinately and reciprocally regulates chemokine and insulin secretion. We discovered that NF-κB controls the increase in chemokine transcription and secretion as well as the decrease in both insulin secretion and proliferation in response to IL-1β. Nitric oxide production, which is markedly elevated in pancreatic β-cells exposed to IL-1β, is a negative regulator of both glucose-stimulated insulin secretion and glucose-induced increases in intracellular calcium levels. By contrast, the IL-1β-mediated production of the chemokines CCL2 and CCL20 was not influenced by either nitric oxide levels or glucose concentration. Instead, the synthesis and secretion of CCL2 and CCL20 in response to IL-1β were dependent on NF-κB transcriptional activity. We conclude that IL-1β-induced transcriptional reprogramming via NF-κB reciprocally regulates chemokine and insulin secretion while also negatively regulating β-cell proliferation. These findings are consistent with NF-κB as a major regulatory node controlling inflammation-associated alterations in islet β-cell function and mass.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 538 ◽  
Author(s):  
Flavien Bermont ◽  
Aurelie Hermant ◽  
Romy Benninga ◽  
Christian Chabert ◽  
Guillaume Jacot ◽  
...  

Pancreatic β-cells secrete insulin to lower blood glucose, following a meal. Maintenance of β-cell function is essential to preventing type 2 diabetes. In pancreatic β-cells, mitochondrial matrix calcium is an activating signal for insulin secretion. Recently, the molecular identity of the mitochondrial calcium uniporter (MCU), the transporter that mediates mitochondrial calcium uptake, was revealed. Its role in pancreatic β-cell signal transduction modulation was clarified, opening new perspectives for intervention. Here, we investigated the effects of a mitochondrial Ca2+-targeted nutritional intervention strategy on metabolism/secretion coupling, in a model of pancreatic insulin-secreting cells (INS-1E). Acute treatment of INS-1E cells with the natural plant flavonoid and MCU activator kaempferol, at a low micromolar range, increased mitochondrial calcium rise during glucose stimulation, without affecting the expression level of the MCU and with no cytotoxicity. Enhanced mitochondrial calcium rises potentiated glucose-induced insulin secretion. Conversely, the MCU inhibitor mitoxantrone inhibited mitochondrial Ca2+ uptake and prevented both glucose-induced insulin secretion and kaempferol-potentiated effects. The kaempferol-dependent potentiation of insulin secretion was finally validated in a model of a standardized pancreatic human islet. We conclude that the plant product kaempferol activates metabolism/secretion coupling in insulin-secreting cells by modulating mitochondrial calcium uptake.


2008 ◽  
Vol 36 (5) ◽  
pp. 955-958 ◽  
Author(s):  
Deirdre Keane ◽  
Philip Newsholme

Both stimulatory and detrimental effects of NEFAs (non-esterified fatty acids) on pancreatic β-cells have been recognized. Acute exposure of the pancreatic β-cell to high glucose concentrations and/or saturated NEFAs results in a substantial increase in insulin release, whereas chronic exposure results in desensitization and suppression of secretion followed by induction of apoptosis. Some unsaturated NEFAs also promote insulin release acutely, but they are less toxic to β-cells during chronic exposure and can even exert positive protective effects. In the present review, we focus on exogenous and endogenous effects of NEFAs, including the polyunsaturated fatty acid, arachidonic acid (or its metabolites generated from cyclo-oxygenase activity), on β-cell metabolism, and have explored the outcomes with respect to β-cell insulin secretion.


2018 ◽  
Vol 46 (1) ◽  
pp. 335-350 ◽  
Author(s):  
Yuting Ruan ◽  
Nie Lin ◽  
Qiang Ma ◽  
Rongping Chen ◽  
Zhen Zhang ◽  
...  

Background/Aims: The islet is an important endocrine organ to secrete insulin to regulate the metabolism of glucose and maintain the stability of blood glucose. Long noncoding RNAs (lncRNAs) are involved in a variety of biological functions and play key roles in many diseases, including type 2 diabetes (T2D). The aim of this study was to determine whether lncRNA-p3134 is associated with glucose metabolism and insulin signaling in pancreatic β cells. Methods: LncRNA microarray technology was used to identify the differentially expressed circulating lncRNAs in T2D patients. RT-PCR analyses were performed to determine the expression of lncRNA-p3134 in 30 pairs of diabetic and non-diabetic patients. The correlation of lncRNA-p3134 to clinical data from T2D patients was analyzed. LncRNA-p3134 was overexpressed in Min6 cells and db/db mice by adenovirus-mediated technology. CCK-8, TUNEL, Western blot, glucose-stimulated insulin secretion (GSIS), ELISAs and immunochemistry were performed to determine the effect of lncRNA-p3134 on proliferation, apoptosis and insulin secretion both in vitro and vivo. Results: The circulating level of lncRNA-p3134 was higher in diabetic patients than in non-diabetic controls and was correlated with fasting blood glucose and HOMA-β levels. The lncRNA-p3134 had risen by 4 times in serum exosomes but nearly unchanged in exosome-free samples. The secretion of lncRNA-p3134 was dynamically modulated by glucose in both Min6 cells and isolated mouse islet cells. LncRNA-p3134 positively regulate GSIS through promoting of key regulators (Pdx-1, MafA, GLUT2 and Tcf7l2) in β cells. In addition, the overexpression of lncRNA-p3134 resulted in a decreased apoptosis ratio and partially reversed the glucotoxicity effects on GSIS function in Min6 cells. The restoration of insulin synthesis and secretion the increase of the insulin positive cells areas by upregulation of lncRNA-p3134 in db/db mice confirmed the compensatory role of lncRNA-p3134 to preserve β-cell function. Furthermore, a protective effect of lncRNA-p3134 on GSIS by positive modulation of PI3K/Akt/mTOR signaling was also confirmed. After blocking the PI3K/AKT signals with their specific inhibitor, the effect of overexpressed lncRNA-p3134 on insulin secretion was obviously attenuated. Conclusion: Taken together, the results of this study provide new insights into lncRNA-p3134 regulation in pancreatic β cells and provide a better understanding of novel mechanism of glucose homeostasis.


2020 ◽  
Author(s):  
Mark Li ◽  
Fan Shao ◽  
Qingwen Qian ◽  
Wenjie Yu ◽  
Zeyuan Zhang ◽  
...  

ABSTRACTMicropeptides (microproteins) encoded by transcripts previously annotated as long noncoding RNA (IncRNAs) are emerging as important mediators of fundamental biological processes in health and disease. Here we applied two computational tools to identify putative micropeptides encoded by lncRNAs that are expressed in the human pancreas. We experimentally verified one such micropeptide encoded by a β-cell- and neural cell-enriched lncRNA TUNAR (also known as TUNA, HI-LNC78 or LINC00617). We named this highly conserved 48-amino-acid micropeptide Beta cell- and Neural cell-regulin (BNLN). BNLN contains a single-pass transmembrane domain and localized at the endoplasmic reticulum in pancreatic β-cells. Overexpression of BNLN lowered ER calcium levels, increased cytosolic calcium levels, and maintained ER homeostasis in response to high glucose challenge. To determine the physiological and pathological roles of BNLN, we assessed the BNLN expression in islets from mice fed with a high-fat diet and a regular diet, and found that BNLN is suppressed by diet-induced obesity (DIO). Conversely, overexpression of BNLN elevated glucose-stimulated insulin secretion in INS-1 cells. Lastly, BNLN overexpression enhanced insulin secretion in islets from lean and obese mice as well as from humans. Taken together, our study provides the first evidence that lncRNA-encoded micropeptides play a critical role in pancreatic β-cell function and provides a foundation for future comprehensive analyses of micropeptide function and pathophysiological impact on diabetes.


Sign in / Sign up

Export Citation Format

Share Document