scholarly journals Vascular Effects of Low-Dose ACE2 Inhibitor MLN-4760—Benefit or Detriment in Essential Hypertension?

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Andrea Berenyiova ◽  
Iveta Bernatova ◽  
Anna Zemancikova ◽  
Magdalena Drobna ◽  
Martina Cebova ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects host cells through angiotensin-converting enzyme 2 (ACE2). Concurrently, the product of ACE2 action, angiotensin 1–7 (Ang 1–7), binds to Mas receptors within the cardiovascular system and provides protective effects. Therefore, it is crucial to reveal the role of ACE2 inhibition, especially within pre-existing cardiovascular pathologies. In our study, we imitated the action of SARS-CoV-2 in organisms using the low dose of the ACE2 inhibitor MLN-4760 with the aim of investigating to what degree ACE2 inhibition is detrimental to the cardiovascular system of spontaneously hypertensive rats (SHRs), which represent a model of human essential hypertension. Our study revealed the complex action of MLN-4760 in SHRs. On the one hand, we found that MLN-4760 had 1) (pro)obesogenic effects that negatively correlated with alternative renin-angiotensin system activity and Ang 1–7 in plasma, 2) negative effects on ACE1 inhibitor (captopril) action, 3) detrimental effects on the small arteries function and 4) anti-angiogenic effect in the model of chick chorioallantoic membrane. On the other hand, MLN-4760 induced compensatory mechanisms involving strengthened Mas receptor-, nitric oxide- and hydrogen sulfide-mediated signal transduction in the aorta, which was associated with unchanged blood pressure, suggesting beneficial action of MLN-4760 when administered at a low dose.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ava Soltani Hekmat ◽  
Kazem Javanmardi

Coronavirus disease 2019 (COVID-19) can occur due to contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has no confined treatment and, consequently, has high hospitalization and mortality rates. Moreover, people who contract COVID-19 present systemic inflammatory spillover. It is now known that COVID-19 pathogenesis is linked to the renin-angiotensin system (RAS). COVID-19 invades host cells via the angiotensin-converting enzyme 2 (ACE2) receptor—as such, an individual’s susceptibility to COVID-19 increases alongside the upregulation of this receptor. COVID-19 has also been associated with interstitial pulmonary fibrosis, which leads to acute respiratory distress, cardiomyopathy, and shock. These outcomes are thought to result from imbalances in angiotensin (Ang) II and Ang-(1-7)/alamandine activity. ACE2, Ang-(1-7), and alamandine have potent anti-inflammatory properties, and some SARS-CoV-2 patients exhibit high levels of ACE2 and Ang-(1-7). This phenomenon could indicate a failing physiological response to prevent or reduce the severity of inflammation-mediated pulmonary injuries. Alamandine, which is another protective component of the RAS, has several health benefits owing to its antithrombogenic, anti-inflammatory, and antifibrotic characteristics. Alamandine alleviates pulmonary fibrosis via the Mas-related G protein-coupled receptor D (MrgD). Thus, a better understanding of this pathway could uncover novel pharmacological strategies for altering proinflammatory environments within the body. Following such strategies could inhibit fibrosis after SARS-CoV-2 infection and, consequently, prevent COVID-19.


2021 ◽  
Author(s):  
Jordana B Cohen ◽  
Andrew M South ◽  
Hossam A Shaltout ◽  
Matthew R Sinclair ◽  
Matthew A Sparks

ABSTRACT In the early months of the coronavirus disease 2019 (COVID-19) pandemic, a hypothesis emerged suggesting that pharmacologic inhibitors of the renin-angiotensin system (RAS) may increase COVID-19 severity. This hypothesis was based on the role of angiotensin-converting enzyme 2 (ACE2), a counter-regulatory component of the RAS, as the binding site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), allowing viral entry into host cells. Extrapolations from prior evidence led to speculation that upregulation of ACE2 by RAS blockade may increase the risk of adverse outcomes from COVID-19. However, counterarguments pointed to evidence of potential protective effects of ACE2 and RAS blockade with regard to acute lung injury, as well as substantial risks from discontinuing these commonly used and important medications. Here we provide an overview of classic RAS physiology and the crucial role of ACE2 in systemic pathways affected by COVID-19. Additionally, we critically review the physiologic and epidemiologic evidence surrounding the interactions between RAS blockade and COVID-19. We review recently published trial evidence and propose important future directions to improve upon our understanding of these relationships.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Carolina Restini ◽  
Trevor Belavek ◽  
Rafael Bernal ◽  
Vanessa Ibrahim ◽  
Kelly Irwin ◽  
...  

: The new coronavirus was first reported in 2019 (China) and officially announced by the World Health Organization as a pandemic in March 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pneumonia-associated illnesses and shares structural homology with the related Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1). One of the mechanisms for SARS-Cov-1 and -2 infection is mediated by the angiotensin-converting enzyme-2 (ACE2) cell receptor, enabling the virus to enter the host cells. ACE2 is an isoform of the angiotensin-converting enzyme 1 (ACE). The actions of ACE2 counterbalance the classic renin-angiotensin system (RAS) axis through the production of Ang 1-7, which promotes cardiovascular, renal, and lung-protective effects. The ACE2 is not the only route for SARS-CoV-2 to enter the host cells. However, due to its roles in the RAS and its participation in the SARS-CoV-2 virulence, ACE2 has gained attention regarding viral mechanisms of pathogenesis, effects of drugs that interfere with the RAS, and as a potential target for therapeutic strategies for the damages caused by SARSCoV-2 infection. Among other tissues, ACE2 gene expression seems to be increased in the lungs upon SARS-CoV-2 infection; however, amid other variables, expression and/or activity of ACE2 is shown as a disease, sex, and age-dependent. The present review covers critical aspects for a comprehensive understanding of ACE2 and its current involvement in SARS-CoV-2 infection and the development of COVID-19.


2020 ◽  
Vol 22 (1) ◽  
pp. 176
Author(s):  
Toshiaki Iba ◽  
Jerrold H. Levy ◽  
Koichiro Aihara ◽  
Katsuhiko Kadota ◽  
Hiroshi Tanaka ◽  
...  

(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.


2021 ◽  
Vol 22 (9) ◽  
pp. 4691
Author(s):  
Anastasia V. Poznyak ◽  
Evgeny E. Bezsonov ◽  
Ali H. Eid ◽  
Tatyana V. Popkova ◽  
Ludmila V. Nedosugova ◽  
...  

COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1204
Author(s):  
Heike Wanka ◽  
Philipp Lutze ◽  
Alexander Albers ◽  
Janine Golchert ◽  
Doreen Staar ◽  
...  

A stimulated renin-angiotensin system is known to promote oxidative stress, apoptosis, necrosis and fibrosis. Renin transcripts (renin-b; renin-c) encoding a cytosolic renin isoform have been discovered that may in contrast to the commonly known secretory renin (renin-a) exert protective effects Here, we analyzed the effect of renin-a and renin-b overexpression in H9c2 cardiomyoblasts on apoptosis and necrosis as well as on potential mechanisms involved in cell death processes. To mimic ischemic conditions, cells were exposed to glucose starvation, anoxia or combined oxygen–glucose deprivation (OGD) for 24 h. Under OGD, control cells exhibited markedly increased necrotic and apoptotic cell death accompanied by enhanced ROS accumulation, loss of mitochondrial membrane potential and decreased ATP levels. The effects of OGD on necrosis were exaggerated in renin-a cells, but markedly diminished in renin-b cells. However, with respect to apoptosis, the effects of OGD were almost completely abolished in renin-b cells but interestingly also moderately diminished in renin-a cells. Under glucose depletion we found opposing responses between renin-a and renin-b cells; while the rate of necrosis and apoptosis was aggravated in renin-a cells, it was attenuated in renin-b cells. Based on our results, strategies targeting the regulation of cytosolic renin-b as well as the identification of pathways involved in the protective effects of renin-b may be helpful to improve the treatment of ischemia-relevant diseases.


Sign in / Sign up

Export Citation Format

Share Document