scholarly journals Alterations in the Proteome and Phosphoproteome Profiles of Rat Hippocampus after Six Months of Morphine Withdrawal: Comparison with the Forebrain Cortex

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 80
Author(s):  
Hana Ujcikova ◽  
Adam Eckhardt ◽  
Lucie Hejnova ◽  
Jiri Novotny ◽  
Petr Svoboda

The knowledge about proteome changes proceeding during protracted opioid withdrawal is lacking. Therefore, the aim of this work was to analyze the spectrum of altered proteins in the rat hippocampus in comparison with the forebrain cortex after 6-month morphine withdrawal. We utilized 2D electrophoretic workflow (Pro-Q® Diamond staining and Colloidal Coomassie Blue staining) which was preceded by label-free quantification (MaxLFQ). The phosphoproteomic analysis revealed six significantly altered hippocampal (Calm1, Ywhaz, Tuba1b, Stip1, Pgk1, and Aldoa) and three cortical proteins (Tubb2a, Tuba1a, and Actb). The impact of 6-month morphine withdrawal on the changes in the proteomic profiles was higher in the hippocampus—14 proteins, only three proteins were detected in the forebrain cortex. Gene Ontology (GO) enrichment analysis of differentially expressed hippocampal proteins revealed the most enriched terms related to metabolic changes, cytoskeleton organization and response to oxidative stress. There is increasing evidence that energy metabolism plays an important role in opioid addiction. However, the way how morphine treatment and withdrawal alter energy metabolism is not fully understood. Our results indicate that the rat hippocampus is more susceptible to changes in proteome and phosphoproteome profiles induced by 6-month morphine withdrawal than is the forebrain cortex.

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 683
Author(s):  
Zdenka Drastichova ◽  
Lucie Hejnova ◽  
Radka Moravcova ◽  
Jiri Novotny

Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin–spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.


2017 ◽  
Vol 7 (1) ◽  
pp. 50 ◽  
Author(s):  
Fadi El-Rami ◽  
Kristina Nelson ◽  
Ping Xu

Streptococcus sanguinis is a commensal and early colonizer of oral cavity as well as an opportunistic pathogen of infectious endocarditis. Extracting the soluble proteome of this bacterium provides deep insights about the physiological dynamic changes under different growth and stress conditions, thus defining “proteomic signatures” as targets for therapeutic intervention. In this protocol, we describe an experimentally verified approach to extract maximal cytoplasmic proteins from Streptococcus sanguinis SK36 strain. A combination of procedures was adopted that broke the thick cell wall barrier and minimized denaturation of the intracellular proteome, using optimized buffers and a sonication step. Extracted proteome was quantitated using Pierce BCA Protein Quantitation assay and protein bands were macroscopically assessed by Coomassie Blue staining. Finally, a high resolution detection of the extracted proteins was conducted through Synapt G2Si mass spectrometer, followed by label-free relative quantification via Progenesis QI. In conclusion, this pipeline for proteomic extraction and analysis of soluble proteins provides a fundamental tool in deciphering the biological complexity of Streptococcus sanguinis.


2015 ◽  
Vol 20 (5) ◽  
Author(s):  
Nela Pavlikova ◽  
Martin Weiszenstein ◽  
Jan Pala ◽  
Petr Halada ◽  
Ondrej Seda ◽  
...  

AbstractExperiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1026
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
M. Selim Ünlü

The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules’ functionalities is critically analyzed.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenyang Liao ◽  
Xunxiao Zhang ◽  
Shengcheng Zhang ◽  
Zhicong Lin ◽  
Xingtan Zhang ◽  
...  

Abstract Background Structural variations (SVs) are a type of mutations that have not been widely detected in plant genomes and studies in animals have shown their role in the process of domestication. An in-depth study of SVs will help us to further understand the impact of SVs on the phenotype and environmental adaptability during papaya domestication and provide genomic resources for the development of molecular markers. Results We detected a total of 8083 SVs, including 5260 deletions, 552 tandem duplications and 2271 insertions with deletion being the predominant, indicating the universality of deletion in the evolution of papaya genome. The distribution of these SVs is non-random in each chromosome. A total of 1794 genes overlaps with SV, of which 1350 genes are expressed in at least one tissue. The weighted correlation network analysis (WGCNA) of these expressed genes reveals co-expression relationship between SVs-genes and different tissues, and functional enrichment analysis shows their role in biological growth and environmental responses. We also identified some domesticated SVs genes related to environmental adaptability, sexual reproduction, and important agronomic traits during the domestication of papaya. Analysis of artificially selected copy number variant genes (CNV-genes) also revealed genes associated with plant growth and environmental stress. Conclusions SVs played an indispensable role in the process of papaya domestication, especially in the reproduction traits of hermaphrodite plants. The detection of genome-wide SVs and CNV-genes between cultivated gynodioecious populations and wild dioecious populations provides a reference for further understanding of the evolution process from male to hermaphrodite in papaya.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2329
Author(s):  
Leda-Eleni Tympa ◽  
Klytaimnistra Katsara ◽  
Panagiotis N. Moschou ◽  
George Kenanakis ◽  
Vassilis M. Papadakis

The outburst of plastic pollution in terrestrial ecosystems poses a potential threat to agriculture and food safety. Studies have already provided evidence for the uptake of plastic microparticles by several plant species, accompanied by numerous developmental effects, using fluorescence labelling techniques. Here, we introduce the implementation of confocal Raman spectroscopy, a label-free method, for the effective detection of microplastics (MPs) accumulation in the roots of a common edible root vegetable plant, Raphanus sativus, after treatment with acrylonitrile butadiene styrene (ABS) powder. We also demonstrate the concomitant occurrence of phenotypic defects in the polymer-treated plants. We anticipate that this work can provide new insights not only into the extent of the impact this widespread phenomenon has on crop plants but also on the methodological requirements to address it.


2021 ◽  
Vol 20 ◽  
pp. 153303382098682
Author(s):  
Zhipeng Zhu ◽  
Jiuhua Xu ◽  
Xiaofang Wu ◽  
Sihao Lin ◽  
Lulu Li ◽  
...  

Background: ADAMTS5 has different roles in multiple types of cancers and participates in various molecular mechanisms. However, the prognostic value of ADAMTS5 in patients with hepatocellular carcinoma (HCC) still remains unclear. We carried the study to evaluate the prognostic value and identified underlying molecular mechanisms in HCC. Methods: Firstly, the association of ADAMTS5 expression and clinicopathological parameters was evaluated by in GSE14520. Next, ADAMTS5 expression in HCC was performed using GSE14520, GSE36376, GSE76427 and The Cancer Genome Atlas (TCGA) profile. Furthermore, Kaplan-Meier analysis, Univariate and Multivariate Cox regression analysis, subgroup analysis was performed to evaluate the prognostic value of ADAMTS5 in HCC. Finally, GO enrichment analysis, gene set enrichment analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) were performed to revealed underlying molecular mechanisms. Result: The expression of ADAMTS5 was positively correlated with the development of HCC. Next, high ADAMTS5 expression was significantly associated with poorer survival (all P < 0.05) and the impact of ADAMTS5 on all overall survival (OS), disease-free survival (DFS), relapse-free survival (RFS), disease specific survival (DSS) and progression free interval (PFI) was specific for HCC among other 29 cancer types. Subgroup analysis showed that ADAMTS5 overexpression was significantly associated with poorer OS in patients with HCC. Finally, ADAMTS5 might participate in the status conversion from metabolic-dominant to extracellular matrix-dominant, and the activation of ECM-related biological process might contribute to high higher mortality risk for patients with HCC. Conclusion: ADAMTS5 may play an important role in the progression of HCC, and may be considered as a novel and effective biomarker for predicting prognosis for patients with HCC.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 750
Author(s):  
Pamali Fonseka ◽  
Taeyoung Kang ◽  
Sing Chee ◽  
Sai V. Chitti ◽  
Rahul Sanwlani ◽  
...  

Neuroblastoma (NBL) is a pediatric cancer that accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc occurs in 20% of NBL patients and is considered high risk as it correlates with aggressiveness, treatment resistance and poor prognosis. Even though the treatment strategies have improved in the recent years, the survival rate of high-risk NBL patients remain poor. Hence, it is crucial to explore new therapeutic avenues to sensitise NBL. Recently, bovine milk-derived extracellular vesicles (MEVs) have been proposed to contain anti-cancer properties. However, the impact of MEVs on NBL cells is not understood. In this study, we characterised MEVs using Western blotting, NTA and TEM. Importantly, treatment of NBL cells with MEVs decreased the proliferation and increased the sensitivity of NBL cells to doxorubicin. Temporal label-free quantitative proteomics of NBL cells highlighted the depletion of proteins involved in cell metabolism, cell growth and Wnt signalling upon treatment with MEVs. Furthermore, proteins implicated in cellular senescence and apoptosis were enriched in NBL cells treated with MEVs. For the first time, this study highlights the temporal proteomic profile that occurs in cancer cells upon MEVs treatment.


2013 ◽  
Vol 90 ◽  
pp. 96-106 ◽  
Author(s):  
Victoria J. Gauci ◽  
Matthew P. Padula ◽  
Jens R. Coorssen

Sign in / Sign up

Export Citation Format

Share Document