scholarly journals TrkB-Targeted Therapy for Mucoepidermoid Carcinoma

Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 531
Author(s):  
Vivian P. Wagner ◽  
Manoela D. Martins ◽  
Esra Amoura ◽  
Virgilio G. Zanella ◽  
Rafael Roesler ◽  
...  

The brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (TrkB) pathway was previously associated with key oncogenic outcomes in a number of adenocarcinomas. The aim of our study was to determine the role of this pathway in mucoepidermoid carcinoma (MEC). Three MEC cell lines (UM-HMC-2, H253 and H292) were exposed to Cisplatin, the TrkB inhibitor, ANA-12 and a combination of these drugs. Ultrastructural changes were assessed through transmission electron microscopy; scratch and Transwell assays were used to assess migration and invasion; and a clonogenic assay and spheroid-forming assay allowed assessment of survival and percentage of cancer stem cells (CSC). Changes in cell ultrastructure demonstrated Cisplatin cytotoxicity, while the effects of ANA-12 were less pronounced. Both drugs, used individually and in combination, delayed MEC cell migration, invasion and survival. ANA-12 significantly reduced the number of CSC, but the Cisplatin effect was greater, almost eliminating this cell population in all MEC cell lines. Interestingly, the spheroid forming capacity recovered, following the combination therapy, as compared to Cisplatin alone. Our studies allowed us to conclude that the TrkB inhibition, efficiently impaired MEC cell migration, invasion and survival in vitro, however, the decrease in CSC number, following the combined treatment of ANA-12 and Cisplatin, was less than that seen with Cisplatin alone; this represents a limiting factor.

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1878 ◽  
Author(s):  
Sami Znati ◽  
Rebecca Carter ◽  
Marcos Vasquez ◽  
Adam Westhorpe ◽  
Hassan Shahbakhti ◽  
...  

Hepatocellular Carcinoma (HCC) is increasing in incidence worldwide and requires new approaches to therapy. The combination of anti-angiogenic drug therapy and radiotherapy is one promising new approach. The anti-angiogenic drug vandetanib is a tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) and RET proto-oncogene with radio-enhancement potential. To explore the benefit of combined vandetanib and radiotherapy treatment for HCC, we studied outcomes following combined treatment in pre-clinical models. Methods: Vandetanib and radiation treatment were combined in HCC cell lines grown in vitro and in vivo. In addition to 2D migration and clonogenic assays, the combination was studied in 3D spheroids and a syngeneic mouse model of HCC. Results: Vandetanib IC 50 s were measured in 20 cell lines and the drug was found to significantly enhance radiation cell kill and to inhibit both cell migration and invasion in vitro. In vivo, combination therapy significantly reduced cancer growth and improved overall survival, an effect that persisted for the duration of vandetanib treatment. Conclusion: In 2D and 3D studies in vitro and in a syngeneic model in vivo, the combination of vandetanib plus radiotherapy was more efficacious than either treatment alone. This new combination therapy for HCC merits evaluation in clinical trials.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 14 ◽  
Author(s):  
Danielle Henn ◽  
Annette Venter ◽  
Christo Botha

Consumption of bufadienolide-containing plants are responsible for many livestock mortalities annually. Bufadienolides are divided into two groups; non-cumulative bufadienolides and cumulative bufadienolides. Cumulative bufadienolides are referred to as neurotoxic, as the chronic intoxication with this type of bufadienolide results in a paretic/paralytic syndrome known as ‘krimpsiekte’. The in vitro cytotoxicity of a non-cumulative bufadienolide, 1α,2α-epoxyscillirosidine, and a cumulative bufadienolide, lanceotoxin B, were compared using the MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction) assay after exposing rat myocardial (H9c2) and mouse neuroblastoma (Neuro-2a) cell lines. The effect of these two bufadienolides on cell ultrastructure was also investigated using transmission electron microscopy (TEM). H9c2 cells exhibited greater cytotoxicity when exposed to 1α,2α-epoxyscillirosidine, compared to lanceotoxin B. In contrast, Neuro-2a cells were more susceptible to lanceotoxin B. The EC50 (half maximal effective concentration) of lanceotoxin B exposure of Neuro-2a cells for 24–72 h ranged from 4.4–5.5 µM compared to EC50s of 35.7–37.6 µM for 1α,2α-epoxyscillirosidine exposure of Neuro-2a cells over the same period. 1α,2α-Epoxyscillirosidine induced extensive vacuolization in both cell types, with swollen RER (rough endoplasmic reticulum) and perinuclear spaces. Lanceotoxin B caused swelling of the mitochondria and sequestration of cytoplasmic material within autophagic vesicles. These results corroborate the notion that cumulative bufadienolides are neurotoxic.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Haoran Lu ◽  
Baofu Yao ◽  
Xinyuan Wen ◽  
Baoqing Jia

Abstract Backgrounds A number of circular RNAs (circRNAs) have been identified in various cancer including F-box and WD repeat domain containing 7 (FBXW7) circular RNA (circ-FBXW7), which can suppress glioma cell growth. However, the role of circ-FBXW7 in colorectal cancer (CRC) remains unclear. We aimed to investigate the effect and mechanisms of circ-FBXW7 on CRC progression. Methods The expression of circ-FBXW7 in CRC patients was detected by PCR. Stably knockdown of circ-FBXW7 (si circ-FBXW7) cell lines and overexpression of circ-FBXW7 (oe circ-FBXW7) cell lines were constructed by small interfering RNA method and plasmids transfection in CRC SW480 and SW620 cells. The functional experiments including cell proliferation, migration and invasion were carried out by cell counting kit-8 (CCK-8) assay, wound healing assay and trans well assay. The xenograft animal models were established to evaluate the effect and the underlying molecular mechanisms of circ-FBXW7 on CRC progression. Results CRC samples had a significantly lower level of circ-FBXW7 compared to normal tissue. si circ-FBXW7 notably promoted the proliferation, colony formation, cell migration and invasion of CRC cell in vitro. On contrast, circ-FBXW7 overexpressed significantly suppressed CRC cell proliferation, migration and invasion. Similarly, si circ-FBXW7 stimulated the tumor growth and circ-FBXW7 overexpression repressed the tumor progression in SW480 and SW620 tumor models, which suggested that circ-FBXW7 could serve as a target biomarker of CRC. Further study found that si circ-FBXW7 up-regulated the mRNA and protein expressions of NEK2 and mTOR, and diminished the PTEN expression. Whereas, overexpressed circ-FBXW7 induced the tumor suppression via reversing the expressions of NEK2, mTOR, and PTEN. Conclusion circ-FBXW7 plays a major role in controlling the progression of CRC through NEK2, mTOR, and PTEN signaling pathways and may be a potential therapeutic target for CRC treatment. Graphical abstract Circ-FBXW7 controls the progression of CRC through NEK2, mTOR, and PTEN signaling pathways and its overexpression inhibits colorectal cancer cell migration and invasion, suggesting the potential therapeutic target for CRC treatment.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Shian Liao ◽  
Sijia Zhou ◽  
Chao Wang

Gastric adenocarcinoma predictive long intergenic non-coding (GAPLINC) is a novel long non-coding RNA (lncRNA) and has been found to function as an oncogenic lncRNA in gastric cancer, colorectal cancer, and bladder cancer. The expression status and biological function of GAPLINC in osteosarcoma are still unknown. Thus, we analyzed the association between GAPLINC expression and clinicopathological characteristics in osteosarcoma clinical samples, and conducted loss-of-function study in osteosarcoma cell lines. In our results, GAPLINC expression is elevated in osteosarcoma tissues and cell lines, and correlated with advanced Enneking stage, present distant metastasis, and poor histological grade. Survival analyses indicated that GAPLINC expression was negatively associated with overall survival, and GAPLINC high-expression was an independent risk factor in osteosarcoma patients. The in vitro studies showed knockdown of GAPLINC depressed osteosarcoma cell migration and invasion via inhibiting CD44 expression, but no effect on cell proliferation. In conclusion, GAPLINC may serve as a potential biomarker for predicting prognosis and developing therapy for osteosarcoma.


Author(s):  
Kairui Liu ◽  
Xiaolin Wu ◽  
Xian Zang ◽  
Zejian Huang ◽  
Zeyu Lin ◽  
...  

Overexpression of the tumor necrosis factor receptor-associated factor 4 (TRAF4) has been detected in many cancer types and is considered to foster tumor progression. However, the role of TRAF4 in hepatocellular carcinoma (HCC) remains elusive. In this study, we found that TRAF4 was highly expressed in HCC cell lines and HCC tissues compared with normal liver cell lines and adjacent noncancerous tissues. TRAF4 overexpression in HCC tissues was correlated with tumor quantity and vascular invasion. In vitro studies showed that TRAF4 was associated with HCC cell migration and invasion. An in vivo study verified that TRAF4 overexpression facilitated metastasis in nude mice. In addition, overexpressed TRAF4 promoted the phosphorylation of Akt and induced Slug overexpression, leading to downregulated E-cadherin and upregulated vimentin, while silencing TRAF4 moderated the phosphorylation of Akt and repressed the expression of Slug, which resulted in upregulated E-cadherin and downregulated vimentin. These effects were inversed after pretreatment of the PI3K/Akt inhibitor LY294002 or overexpression of constitutively active Akt1. Our study demonstrated that TRAF4 was involved in promoting HCC cell migration and invasion. The process was induced by the EMT through activation of the PI3K/Akt signaling pathway.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuechao Liu ◽  
Guangfeng Wang ◽  
Xianglei Yan ◽  
Haibo Qiu ◽  
Ping Min ◽  
...  

Abstract Background Imatinib shows limited efficacy in patients with gastrointestinal stromal tumors (GISTs) carrying secondary KIT mutations. HQP1351, an orally bioavailable multikinase BCR-ABL inhibitor, is currently in clinical trials for the treatment of T315I mutant chronic myelogenous leukemia (CML), but the potential application in imatinib-resistant GISTs carrying secondary KIT mutations has not been explored. Methods The binding activities of HQP1351 with native or mutant KIT were first analyzed. Imatinib-sensitive GIST T1 and imatinib-resistant GIST 430 cells were employed to test the in vitro antiproliferative activity. Colony formation assay, cell migration assay and cell invasion assay were performed to evaluate the clonogenic, migration and invasion ability respectively. Flow cytometry and western blot analysis were used to detect cell apoptosis, cell cycle and signaling pathway. In vivo antitumor activity was evaluated in mouse xenograft models derived from GIST cell lines. Results HQP1351 potently inhibited both wild-type and mutant KIT kinases. In both imatinib-resistant and sensitive GIST cell lines, HQP1351 exhibited more potent or equivalent antiproliferative activity compared with ponatinib, a third generation BCR-ABL and KIT inhibitor. HQP1351 led to more profound inhibition of cell colony formation, cell migration and invasion, cell cycle arrest and cell apoptosis than ponatinib. Furthermore, HQP1351 also inhibited p-KIT, p-AKT, p-ERK1/2, and p-STAT3 to a higher extent than ponatinib. Finally, in xenograft tumor models derived from imatinib-resistant GIST cancer cell lines, HQP1351 exhibited antitumor activity superior to ponatinib. Conclusions Collectively, our in vitro and in vivo results suggest that the therapeutic application of HQP1351 in imatinib-resistant GIST patients deserves further investigation in clinical trials.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Mengtao Xing ◽  
Pei Li ◽  
Xiao Wang ◽  
Jitian Li ◽  
Jianxiang Shi ◽  
...  

p62/IMP2 is an oncofetal protein that was first reported as a tumor-associated antigen in hepatocellular carcinoma (HCC). In our previous studies, we demonstrated a high frequency of p62/IMP2 autoantibodies appearing in various types of cancer. Therefore, we hypothesize that p62/IMP2 plays an important role in the progression of HCC, although the mechanism remains to be explored. In this study, we evaluated the expression of p62/IMP2 protein both in human tissues and liver cancer cell lines by immunohistochemistry and western blotting analysis and found that p62/IMP2 protein is overexpressed in human HCC tissue in comparison to normal human liver tissue. To explore the role that p62/IMP2 plays in HCC, p62/IMP2 was knocked out in two p62/IMP2-positive liver cancer cell lines (SNU449 and HepG2). Due to the low expression level of p62/IMP2 in SNU449, we overexpressed p62/IMP2 in this cell line. We subsequently demonstrated that high expression of p62/IMP2 in both cell lines can promote cell migration and invasion abilities in vitro by activating the Wnt/β-catenin pathway. We also used the Wnt/β-catenin pathway inhibitor, XAV 939, and a phosphoproteome assay to confirm our findings. Conclusion: Our results suggest that p62/IMP2 is an essential regulator of Wnt signaling pathways and plays an important role in HCC progression and metastasis.


Author(s):  
Jian Zhang ◽  
Xin Wen ◽  
Xian-Yue Ren ◽  
Ying-Qin Li ◽  
Xin-Ran Tang ◽  
...  

Abstract Background Metastasis remains the major cause of death in nasopharyngeal carcinoma (NPC). Yippee-like 3 (YPEL3) plays an important role in tumorigenesis. However, its function and mechanism in NPC has not been systematically explored. Methods We evaluated YPEL3 expression in NPC cell lines and tissues using real-time PCR and western blotting. Then, we established NPC cell lines that stably overexpressed YPEL3 and knocked down YPEL3 expression to explore its function in NPC in vitro and in vivo. Additionally, we investigated the potential mechanism of YPEL3 action by identifying the Wnt/β-catenin signaling pathway downstream genes using western blotting. Results YPEL3 was downregulated in NPC cell lines and tissue samples. Ectopic expression of YPEL3 inhibited NPC cell migration and invasion in vitro; while silencing of YPEL3 promoted NPC cell migration and invasion. Further study indicated that overexpression of YPEL3 inhibited NPC cell epithelial–mesenchymal transition (EMT) and that silencing it enhanced EMT. Overexpression of YPEL3 suppressed NPC cell lung metastasis in vivo. The mechanism study determined that YPEL3 suppressed the expression levels of Wnt/β-catenin signaling pathway downstream genes and the nuclear translocation of β-catenin. Conclusions YPEL3 suppresses NPC EMT and metastasis by suppressing the Wnt/β-catenin signaling pathway, which would help better understanding the molecular mechanisms of NPC metastasis and provide novel therapeutic targets for NPC treatment.


1997 ◽  
Vol 78 (02) ◽  
pp. 880-886 ◽  
Author(s):  
Monique J Wijnberg ◽  
Paul H A Quax ◽  
Nancy M E Nieuwenbroek ◽  
Jan H Verheijen

SummaryThe plasminogen activation system is thought to be important in cell migration processes. A role for this system during smooth muscle cell migration after vascular injury has been suggested from several animal studies. However, not much is known about its involvement in human vascular remodelling. We studied the involvement of the plasminogen activation system in human smooth muscle cell migration in more detail using an in vitro wound assay and a matrix invasion assay. Inhibition of plasmin activity or inhibition of urokinase-type plasminogen activator (u-PA) activity resulted in approximately 40% reduction of migration after 24 h in the wound assay and an even stronger reduction (70-80%) in the matrix invasion assay. Migration of smooth muscle cells in the presence of inhibitory antibodies against tissue-type plasminogen activator (t-PA) was not significantly reduced after 24 h, but after 48 h a 30% reduction of migration was observed, whereas in the matrix invasion assay a 50% reduction in invasion was observed already after 24 h. Prevention of the interaction of u-PA with cell surface receptors by addition of soluble u-PA receptor or α2-macroglobulin receptor associated protein (RAP) to the culture medium, resulted in a similar inhibition of migration and invasion. From these results it can be concluded that both u-PA and t-PA mediated plasminogen activation can contribute to in vitro human smooth muscle cell migration and invasion. Furthermore, the interaction between u-PA and its cell surface receptor appears also to be involved in this migration and invasion process. The inhibitory effects on migration and invasion by the addition of RAP suggests an involvement of a RAP sensitive receptor of the LDL receptor family, possibly the LDL-receptor related protein (LRP) and/or the VLDL receptor.


Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


Sign in / Sign up

Export Citation Format

Share Document