scholarly journals Albumin Fusion at the N-terminus or C-terminus of HM-3 Leads to Improved Pharmacokinetics and Bioactivities

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1084
Author(s):  
Ting Li ◽  
Han-Zi Zhang ◽  
Guang-Fei Ge ◽  
Zhao-Rong Yue ◽  
Ru-Yue Wang ◽  
...  

HM-3, an integrin antagonist, exhibits anti-tumor biological responses and therefore has potential as a therapeutic polypeptide. However, the clinical applications of HM-3 are limited by its short half-life. In this study, we genetically fused human serum albumin (HSA) to the N or C-terminus of HM-3 to improve HM-3 pharmacokinetics. HM-3/HSA proteins were successfully expressed in Pichia pastoris and displayed improved pharmacokinetic properties and stability. Among them, the half-life of HM-3-HSA was longer than HSA-HM-3. In vitro, the IC50 values of HSA-HM-3 and HM-3-HSA were 0.38 ± 0.14 μM and 0.25 ± 0.08 μM in B16F10 cells, respectively. In vivo, the inhibition rates of B16F10 tumor growth were 36% (HSA-HM-3) and 56% (HM-3-HSA), respectively, indicating antitumor activity of HM-3-HSA was higher than HSA-HM-3. In conclusion, these results suggested that the HM-3/HSA fusion protein might be potential candidate HM-3 agent for treatment of melanoma and when HSA was fused at the C-terminus of HM-3, the fusion protein had a higher stability and activity.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3799-3799
Author(s):  
Yasuhiko Kamikubo ◽  
Lisa Garrett-Beal ◽  
Martha Kirby ◽  
Pu Paul Liu

Abstract Inv(16)(p13q22) is found in almost all human acute myeloid leukemia (AML) subtype M4Eo cases and forms a fusion gene CBFB-MYH11, which encodes a fusion protein CBFβ–SMMHC. CBFβ forms a heterodimeric transcription factor with RUNX1 and both are required for embryonic hematopoiesis, while SMMHC is the smooth muscle myosin heavy chain. Using knock-in mouse strategy, we previously demonstrated that Cbfb+/MYH11 F1 embryos have severe blockage of definitive hematopoiesis and die from CNS hemorrhage. The phenotype was similar to that of embryos with homozygous deletion of Cbfb or Runx1, suggesting that Cbfb-MYH11 dominantly represses Runx1/CBFb function. We further demonstrated that Cbfb-MYH11 is necessary but not sufficient for leukemia to develop, as the Cbfb+/MYH11 mice required additional mutations for leukemogenesis. Several hypotheses have been proposed, based on in vitro studies, to explain how CBFβ-SMMHC dominantly inhibits RUNX1/CBFβ. The C-terminal region of CBFβ-SMMHC is responsible for multimerization and also interacts with corepressors; thus this region might be critical for RUNX1 repression. To determine the importance of this multimerization domain in vivo, we generated knock-in mice expressing CBFβ-SMMHC with a 95 aa C-terminal deletion (CBFβ-SMMHCdC95), which truncates this multimerization/repression domain. CBFβ-SMMHCdC95 expressing F1 heterozygous embryos (Cbfb+/MYH11dC95) developed normally with no hematopoietic defects and no hemorrhage. Hematopoiesis was normal in the adult Cbfb+/MYH11dC95 mice except for mild increase of mature neutrophils and minor T cell developmental defects in the first year. However, the mice proceeded to a lethal myeloproliferative disorder (MPD) during their second year of life. There was a significant increase of Mac1/Gr1 double positive cells in the peripheral blood and the spleen, which were negative for the stem cell/progenitor cell marker, c-kit. Morphologically the erythrocytes and neutrophils were dysplastic, and the mice developed severe splenomegaly. ENU treatment of the Cbfb+/MYH11dC95 mice accelerated the development of the MPD phenotype but could not induce overt, transplantable, myeloid leukemia. These data suggest that the multimerizatin domain of SMMHC is important for both hematopoiesis blockage and leukemogenesis, especially the blastic transformation of inv16 leukemia.


2008 ◽  
Vol 99 (04) ◽  
pp. 659-667 ◽  
Author(s):  
Thomas Weimer ◽  
Wilfried Wormsbächer ◽  
Ulrich Kronthaler ◽  
Wiegand Lang ◽  
Uwe Liebing ◽  
...  

SummaryFor the treatment of haemophilia patients with inhibitors, recombinant factor VIIa (rFVIIa) is available as a therapeutic option to control bleeding episodes with a good balance of safety and efficacy. However, the short in-vivo half-life of approximately 2.5 hours makes multiple injections necessary, which is inconvenient for both physicians and patients. Here we describe the generation of a recombinant FVIIa molecule with an extended half-life based on genetic fusion to human albumin. The recombinant FVII albumin fusion protein (rVII-FP) was expressed in mammalian cells and upon activation displayed a FVII activity close to that of wild type FVIIa. Pharmacokinetic studies in rats demonstrated that the half-life of the activated recombinant FVII albumin fusion protein (rVIIa-FP) was extended six- to sevenfold compared with wild type rFVIIa. The in-vitro and in-vivo efficacy was evaluated and was found to be comparable to a commercially available rFVIIa (NovoSeven®). The results of this study demonstrate that it is feasible to develop a half-life extended FVIIa molecule with haemostatic properties very similar to the wild-type factor.


2019 ◽  
pp. 1-8
Author(s):  
Saeed Ranjbar ◽  
Aria Momeni ◽  
Azadeh Reshadmanesh ◽  
Azita Fakhravar ◽  
Nafiseh Paydarnia ◽  
...  

Targeting tumor cells via multiple pathways promises the emergence of a new era in cancer therapy. Consisting of a cell-binding ligand and a cytotoxic moiety, cytolytic fusion proteins can selectively bind and kill target cells with minimal adverse effects. We designed a novel immunoproapoptotic fusion protein, p28-fur-GrB, composed of the cancer-specific azurin-derived cell penetrating peptide, p28, and a mutant version of human serine protease granzyme B. The two moieties were genetically fused by a furin sensitive linker, allowing in vivo cleavage and activation of the immunotoxin after cell entry. Synthesized coding gene of the recombinant protein was cloned and expressed in HEK293T cells, and nickel chromatography was applied for protein purification. After in vitro furin cleavage and primary analyses of SDS-PAGE, Western blotting, GrB activity and ELISA binding assay, the fusion protein was tested for its cytotoxicity on various breast cancer cell lines. Suppression of cell proliferation and viability was evaluated using the WST-1 assay. Furthermore, DNA fragmentation was measured as an indication of apoptotic effects of the fusion protein on treated cells. Based on our results, p28-fur-GrB was efficiently cleaved by furin and showed high GrB activity and binding affinity after cleavage. Following 72h of incubation with IC50 values of the fusion protein, significant cytotoxic effects of 80.6%, 77.1%, 74% and 69.6% were recorded for BT474, MCF7, SK-BR-3 and MDA-MB-231 tumor cells, respectively. Proliferative potential of MCF 10A normal cells was not affected by the treatment. Analysis of the rate of apoptosis in treated cells confirmed our cytotoxicity results. We concluded that p28-fur-GrB is a potent anti-tumor agent with high cytotoxicity against breast cancer cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1162-1162
Author(s):  
Jee-Yeong Jeong ◽  
Changmin Chen ◽  
Kerry L. Davis ◽  
Andreas Breidbach ◽  
Don H. Catlin ◽  
...  

Abstract Recombinant human erythropoietin (EPO, epoetin) is used widely for treatment of chronic anemia due to renal failure, cancer, and other causes. However, considerably high and frequent doses of EPO are required to maintain therapeutic effectiveness, since it has a relatively short in vivo half-life. Thus, alternatives with higher efficacy and/or longer half-life are being developed. We have shown previously that EPO-dimers, either produced by chemical cross-linking of monomeric EPO or expressed as a recombinant fusion protein from COS cells, exhibit enhanced biological properties in vitro and in vivo (Sytkowski, et.al. Proc. Natl. Acad. Sci. USA 95, 1184; Sytkowski, et.al. J. Biol. Chem. 274, 24773). We now report increased activities of EPO-dimer fusion protein and EPO-trimer fusion protein comprised of identical head-to-tail repeats and a 15 or 20-amino acid linker (for dimer), or 17-amino acid linkers (for trimer) produced from stably transfected CHO cells. EPO-fusion proteins were expressed under a CMV promoter with a signal peptide present on the first monomer coding sequence. The EPO-dimer fusion protein was connected with either three or four repeats of Gly-Gly-Gly-Gly-Ser as a 15 or 20-amino acid linker sequence, respectively. The expression levels of EPO-dimer fusion protein from cloned CHO cells to supernatant of protein-free medium ranged from 4 to 40 mg/L determined by EPO-ELISA, and from 2.0×105 to 4.5×106 IU/L determined by in vitro bioassay. We selected clones producing EPO-dimer fusion protein with the greatest extent of glycosylation, as indicated by SDS-PAGE and isoelectric focusing. Subcutaneous injection of mice with three doses of EPO-dimer fusion protein resulted in percent increases in mean hematocrit of 32.6% (300 IU/kg) or 18.2% (100 IU/kg), while equivalent unit doses of EPO-monomer increased mean hematocrit by 12.5% (300 IU/kg) or 6.4% (100 IU/kg). Moreover, a single dose of EPO-dimer fusion protein (100 IU/kg) increased their mean hematocrit by 4.3% within 7 days, while an equivalent unit dose of EPO-monomer had no effect. Importantly, three doses of EPO-trimer fusion protein increased their mean hematocrit by 8.83% per IU injected, which was much greater than that observed with EPO-monomer (0.69%) or EPO-dimer fusion protein (1.81%). The results show that EPO-fusion proteins exhibit biological activities superior to those of EPO-monomer, suggesting important therapeutic advantages.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1590-1590
Author(s):  
Edmund A Rossi ◽  
Chien-Hsing Chang ◽  
Thomas M Cardillo ◽  
Diane L Nordstrom ◽  
David M. Goldenberg

Abstract BACKGROUND: Interferon-α2b (IFN-α2b) is active alone and in combination with other agents in the therapy of a variety of cancers, including hairy cell leukemia, chronic myelocytic leukemia, follicular lymphoma, and malignant melanoma. As for most cytokines, the pharmacokinetics are a major factor affecting schedule and efficacy. The protein is rapidly degraded, diffuses widely throughout the body, and has a rapid rate of renal clearance. Commercially available IFNs that are pegylated, such as PEG-INTRON and PEGASYS, have increased serum half-life and reduced renal clearance, which augment their biological activity. For therapy of lymphoma and other cancers, fusing IFN-α2 to tumor-targeting antibodies could increase serum half-life and target the IFN-α2 to the tumor, conceivably allowing less frequent and lower dosing with improved therapeutic efficacy and reduced side effects. METHODS: The modular DNL method exploits a pair of distinct protein domains involved in the natural binding between protein kinase A (PKA) and A-kinase anchoring proteins (AKAP), whereby the dimerization-and-docking domain (DDD) of PKA and the anchoring domain (AD) of an interactive AKAP are each fused to a biological entity, resulting in respective DDD- and AD-modules that are readily combined to quantitatively generate stably-tethered structures of defined composition with retained bioactivity. We have selectively combined recombinant DDD-modules comprising IFN-α2b with recombinant AD-modules derived from the anti-CD20 humanized mAb, veltuzumab, and other humanized mAbs to generate complexes comprising four copies of IFN-α2b site-specifically linked to the bivalent IgG. RESULTS: The IgG-AD2 and IFN-α2b-DDD2 modules were expressed in separate myeloma cell cultures and purified from culture broths by Protein A and IMAC, respectively. Combining an IgG-AD2 module with slightly more than 2 molar equivalents of the cytokine-DDD2 module under mild redox conditions resulted in the formation of a covalent complex comprising one IgG and 4 IFN-α2b via the docking of each of the two AD2 domains on IgG with a dimer of IFN-α2b-DDD2, and subsequent formation of disulfide bonds (locking) between DDD2 and AD2. The 255-kDa conjugates, which were purified by Protein A, were readily detected by size-exclusion HPLC and non-reducing SDS-PAGE, and retained the biological functions of IFN-α2b in vitro. The IgG-IFN-α2b constructs exhibited potent anti-viral activity in vitro, with specific activities approaching that of recombinant human IFN-α2b. Additionally, the constructs all showed highly potent in vitro cytotoxicity against Burkitt lymphoma cell lines. Notably, the CD20-targeted IFN-α2b construct (20-2b) was 30-fold more potent than a control, non-targeting IgG-IFN-α2b. The enhanced cytotoxicity of 20-2b was not reproduced when non-targeting IgG-IFN-α2b was used in combination with veltuzumab, suggesting that IFN-α2b must be physically linked to achieve maximal potency. IgG-IFN-α2b fusion proteins, including 20-2b, induced significantly more potent ADCC compared to their parental MAbs. The targeting properties of 20-2b were comparable to veltuzumab, and its serum half-life was significantly longer than PEG-INTRON and PEGASYS. In the human Daudi xenograft model, 20-2b showed superior anti-tumor efficacy compared to both veltuzumab and other IgG-IFN-α2 agents. The median survival time (MST) for mice treated with single-dose 170 ng 20-2b was 101.5 days, whereas those treated with an equivalent dose of veltuzumab and untreated mice survived 39 and 28 days, respectively (P<0.0005). Lower 20-2b doses of 80, 17 and 8 ng resulted in MST of 97.5, 56.5 and 48 days, respectively, with the lowest dose still significantly better than the highest dose of veltuzumab (P=0.0434). Using a single 170-ng dose, a CD22-targeting IFN-α2b (22-2b) also increased MST significantly to 47 days (P =0.0119), while a non-targeting IgG-IFN-α2b (734-2b) did not. CONCLUSIONS: The DNL method provided an IFN-α2-targeting mAb fusion protein that showed improved anti-tumor efficacy over the mAb by itself, based on improved pharmacokinetics, ADCC, and tumor targeting, as well as reduced systemic toxicity. Thus, DNL provides a modular approach to efficiently tether cytokines to targeting antibodies, resulting in higher in vivo potency than the original cytokines or mAbs.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1134 ◽  
Author(s):  
Shan Su ◽  
Giselle Rasquinha ◽  
Lanying Du ◽  
Qian Wang ◽  
Wei Xu ◽  
...  

Enfuvirtide (T20) is the first U.S. FDA-approved HIV fusion inhibitor-based anti-HIV drug. Its clinical application is limited because of its low potency and short half-life. We previously reported that peptide HP23-E6-IDL, containing both N- and C-terminal anchor-tails, exhibited stronger potency and a better resistance profile than T20. Here we designed an analogous peptide, YIK, by introducing a mutation, T639I, and then a lipopeptide, YIK-C16, by adding palmitic acid (C16) at the C-terminus of YIK. We found that YIK-C16 was 4.4- and 3.6-fold more potent than HP23-E6-IDL and YIK against HIV-1IIIB infection and 13.3- and 10.5-fold more effective than HP23-E6-IDL and YIK against HIV-1Bal infection, respectively. Consistently, the ex vivo anti-HIV-1IIIB activity, as determined by the highest dilution-fold of the serum causing 50% inhibition of HIV-1 infection, of YIK-C16 in the sera of pretreated mice was remarkably higher than that of YIK or HP23-E6-IDL. The serum half-life (t1/2 = 5.9 h) of YIK-C16 was also significantly longer than that of YIK (t1/2 = 1.3 h) and HP23-E6-IDL (t1/2 = 1.0 h). These results suggest that the lipopeptide YIK-C16 shows promise for further development as a new anti-HIV drug with improved anti-HIV-1 activity and a prolonged half-life.


2006 ◽  
Vol 188 (24) ◽  
pp. 8413-8420 ◽  
Author(s):  
Jong Kyong Kim ◽  
Scott B. Mulrooney ◽  
Robert P. Hausinger

ABSTRACT Four accessory proteins (UreD, UreE, UreF, and UreG) are typically required to form the nickel-containing active site in the urease apoprotein (UreABC). Among the accessory proteins, UreD and UreF have been elusive targets for biochemical and structural characterization because they are not overproduced as soluble proteins. Using the best-studied urease system, in which the Klebsiella aerogenes genes are expressed in Escherichia coli, a translational fusion of ureE and ureF was generated. The UreEF fusion protein was overproduced as a soluble protein with a convenient tag involving the His-rich region of UreE. The fusion protein was able to form a UreD(EF)G-UreABC complex and to activate urease in vivo, and it interacted with UreD-UreABC in vitro to form a UreD(EF)-UreABC complex. While the UreF portion of UreEF is fully functional, the fusion significantly affected the role of the UreE portion by interrupting its dimerization and altering its metal binding properties compared to those of the wild-type UreE. Analysis of a series of UreEF deletion mutants revealed that the C terminus of UreF is required to form the UreD(EF)G-UreABC complex, while the N terminus of UreF is essential for activation of urease.


2018 ◽  
Vol 19 (9) ◽  
pp. 2683 ◽  
Author(s):  
Ruijing Huang ◽  
Jian Li ◽  
Yibo Wang ◽  
Lihua Zhang ◽  
Xiaohui Ma ◽  
...  

Current treatment of rheumatoid arthritis (RA) is limited by relative shortage of treatment targets. HM-3 is a novel anti-RA polypeptide consisting of 18 amino acids with integrin αVβ3 and α5β1 as targets. Previous studies confirmed that HM-3 effectively inhibited the synovial angiogenesis and the inflammatory response. However, due to its short half-life, the anti-RA activity was achieved by frequent administration. To extend the half-life of HM-3, we designed a fusion protein with name HM-3-Fc, by combination of modified Fc segment of immunoglobulin 4 (IgG4) with HM-3 polypeptide. In vitro cell experiments demonstrated that HM-3-Fc inhibited the proliferation of splenic lymphocytes and reduced the release of TNF-α from macrophages. The pharmacodynamics studies on mice paw in Collagen-Induced Arthritis (CIA) model demonstrated that HM-3-Fc administered once in 5 days in the 50 and 25 mg/kg groups, or once in 7 days in the 25 mg/kg group showed a better protective effect within two weeks than the positive control adalimumab and HM-3 group. Preliminary pharmacokinetic studies in cynomolgus confirmed that the in vivo half-life of HM-3-Fc was 15.24 h in comparison with 1.32 min that of HM-3, which demonstrated that an Fc fusion can effectively increase the half-life of HM-3 and make it possible for further reduction of subcutaneous injection frequency. Fc-HM-3 is a long-acting active molecule for RA treatment.


2021 ◽  
Author(s):  
Xiaole Chen ◽  
Shuangyu Tan ◽  
Mengru Yan ◽  
Kaimei Nie ◽  
Qingmei Zheng ◽  
...  

Abstract A novel anti-TNF-α/IL-6R triple-specific fusion protein, by linking 3 single domain chains, was designed and constructed in our lab. The high purity fusion proteins were obtained by our developed prokaryotic expression system process with high binding affinity with TNF-α (94.75 pM), Human Serum Albumin (1.83 nM) and IL-6R (2.29 nM). In this study, the anti-TNF-α/IL-6R triple-specific fusion protein protected the mouse fibroblast fibrosarcoma cell line (L929) from the apoptosis effects induced by TNF-α, establishing that the expressed fusion proteins can selectively combine with TNF-α in vitro. In vivo, the survival rate of cecal ligation and puncture (CLP) was notably increased in the group with anti-TNF-α/IL-6R triple-specific fusion protein treatment, and meaningfully higher compared with the single-targeted IL-6R and TNF-α fusion protein at the same dose. After the treatment with anti-TNF-α/IL-6R triple-specific fusion protein, the level of serum TNF-α, IL-1β and IL-6 were significantly decreased, and sepsis-induced pathological injuries in the kidney were remarkably attenuated. The anti-TNF-α/IL-6R triple-specific fusion protein can be the potential candidate for the development of new drug design against sepsis.


2019 ◽  
Vol 15 (7) ◽  
pp. 715-728 ◽  
Author(s):  
Anser Ali ◽  
Zaman Ashraf ◽  
Muhammad Rafiq ◽  
Ajeet Kumar ◽  
Farukh Jabeen ◽  
...  

Background: Tyrosinase is involved in the melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders. Controlling the melanogenesis could be an important strategy for treating abnormal pigmentation. Methods: In the present study, a series of amide derivatives (3a-e and 5a-e) were synthesized aiming to inhibit tyrosinase activity and melanin production. All derivatives were screened for tyrosinase inhibition in a cell-free system. The possible interactions of amide derivatives with tyrosinase enzyme and effect of these interactions on tyrosinase structure were checked by molecular docking in silico and by Circular Dichroism (CD) studies, respectively. The most potent amide derivative (5c) based on cell-free experiments, was further tested for cellular ROS inhibition and for tyrosinase activity using mouse skin melanoma (B16F10) cells. Results: The tyrosinase inhibitory concentration (IC50) for tested compounds was observed between the range of 68 to 0.0029 µg/ml with a lowest IC50 value of compound 5c which outperforms the reference arbutin and kojic acid. The cellular tyrosinase activity and melanin quantification assay demonstrate that 15µg/ml of 5c attenuates 36% tyrosinase, 24% melanin content of B16F10 cells without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that 5c effectively reduces melanogenesis without perceptible toxicity. Furthermore, the molecular docking demonstrates that compound 5c interacts with copper ions and multiple amino acids in the active site of tyrosinase with best glide score (-5.387 kcal/mol), essential for mushroom tyrosinase inhibition and the ability to diminish the melanin synthesis in-vitro and in-vivo. Conclusion: Thus, we propose compound 5c as a potential candidate to control tyrosinase rooted hyperpigmentation in the future.


Sign in / Sign up

Export Citation Format

Share Document