scholarly journals Effectiveness of Biofunctionalization of Titanium Surfaces with Phosphonic Acid

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1663
Author(s):  
Ainhoa Aresti ◽  
Javier Aragoneses ◽  
Nansi López-Valverde ◽  
Ana Suárez ◽  
Juan Manuel Aragoneses

Surface functionalization of dental implant surfaces has been a developing field in biomaterial research. This study aimed to obtain self-assembled monolayers (SAMs) using carboxyethylphosphonic acid on the surface of titanium (Ti) screws, and assessed the surface characteristics, biomechanical, and cellular behavior on the obtained specimens. This study had three groups, i.e., a control (untreated screws), a test group treated with phosphonic acid, and a third group with treated acid and bone morphogenetic protein (BMP-2) for in vitro analysis of cell lines. The assessed parameters included surface wettability, surface characteristics using scanning electron microscopy (SEM), protein immobilization, and cellular behavior of fibroblasts and mesenchymal stem cells of adipose tissue (MSCat cells). For surface wettability, a Welch test was performed to compare the contact angles between control (67 ± 1.83) and test (18.84 ± 0.72) groups, and a difference was observed in the mean measurements, but was not statistically significant. The SEM analysis showed significant surface roughness on the test screws and the cellular behavior of fibroblasts, and MSCat cells were significantly improved in this group, with fibroblasts having a polygonal shape with numerous vesicles and MSCat cells stable and uniformly coating the test Ti surface. Surface biofunctionalization of Ti surfaces with phosphonic acid showed promising results in this study, but remains to be clinically validated for its applications.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1913
Author(s):  
Luminita Nicoleta Dumitrescu ◽  
Madalina Icriverzi ◽  
Anca Bonciu ◽  
Anca Roșeanu ◽  
Antoniu Moldovan ◽  
...  

In the last decades, optimizing implant properties in terms of materials and biointerface characteristics represents one of the main quests in biomedical research. Modifying and engineering polyvinylidene fluoride (PVDF) as scaffolds becomes more and more attractive to multiples areas of bio-applications (e.g., bone or cochlear implants). Nevertheless, the acceptance of an implant is affected by its inflammatory potency caused by surface-induced modification. Therefore, in this work, three types of nano-micro squared wells like PVDF structures (i.e., reversed pyramidal shape with depths from 0.8 to 2.5 microns) were obtained by replication, and the influence of their characteristics on the inflammatory response of human macrophages was investigated in vitro. FTIR and X-ray photoelectron spectroscopy analysis confirmed the maintaining chemical structures of the replicated surfaces, while the topographical surface characteristics were evaluated by AFM and SEM analysis. Contact angle and surface energy analysis indicated a modification from superhydrophobicity of casted materials to moderate hydrophobicity based on the structure’s depth change. The effects induced by PVDF casted and micron-sized reversed pyramidal replicas on macrophages behavior were evaluated in normal and inflammatory conditions (lipopolysaccharide treatment) using colorimetric, microscopy, and ELISA methods. Our results demonstrate that the depth of the microstructured surface affects the activity of macrophages and that the modification of topography could influence both the hydrophobicity of the surface and the inflammatory response.


2017 ◽  
Vol 11 (01) ◽  
pp. 058-063 ◽  
Author(s):  
Vini Rajeev ◽  
Rajeev Arunachalam ◽  
Sanjna Nayar ◽  
P. R. Arunima ◽  
Sivadas Ganapathy ◽  
...  

ABSTRACT Objective: This in vitro study was designed to assess shear bond strength (SBS) of ormocer flowable (OF) resin as a luting agent, ormocer as an indirect veneer material with portrayal of modes of failures using scanning electron microscope (SEM). Materials and Methods: Sixty maxillary central incisors were divided into Group I, II, and III with 20 samples each based on luting cement used. They were OF, self-adhesive (SA) cement, and total etch (TE) cement. These groups were subdivided into “a” and “b” of ten each based on the type of veneering materials used. Veneer discs were fabricated using Ormocer restorative (O) and pressable ceramic (C). Specimens were thermocycled and loaded under universal testing machine for SBS. The statistical analysis was done using one-way ANOVA post hoc Tukey honest significant difference method. Results: A significant difference was observed between the Groups I and II (P < 0.05). The highest mean bond strength when using ormocer veneer was obtained with the Group Ia (19.11 ± 1.92 Mpa) and lowest by Group IIa (8.1 ± 1.04 Mpa), whereas the highest mean bond strength while using ceramic veneer was of similar range for Group Ib (18.04 ± 4.08 Mpa) and Group IIIb (18.07 ± 1.40 Mpa). SEM analysis revealed OF and TE presented mixed type of failure when compared with SA where failure mode was totally adhesive. Conclusion: OF was found equally efficient like TE. Bond strength of ormocer as a veneer was not inferior to ceramic making it one of the promising additions in the field of dentistry.


Author(s):  
Viswanadh Kunam ◽  
Vidyadhara Suryadevara ◽  
Devala Rao Garikapati ◽  
Venkata Basaveswara Rao Mandava ◽  
RLC Sasidhar

Objective: In the present investigation, an attempt was made to improve the surface characters and solubility of the drug by solid dispersion and coating it on the nonpareil sugar beads as pellets. Methods: Ezetimibe solid dispersions were prepared by kneading method using soluplus. Crospovidone was added as a disintegrant in pellets. Ezetimibe pellets were prepared by dissolving soluplus and crospovidone in ethanol in different ratios and coated on nonpareil sugar beads as a drug layer by pan coating technique. Various physicochemical parameters like particle size, friability, angle of repose and drug content were evaluated for the prepared solid dispersions and pellet formulations. In vitro dissolution studies were carried out in 1% SLS using USP apparatus II. FTIR and SEM analysis were performed for solid dispersions, pellet formulations and its polymers to determine the interactions and surface characteristics. Results: The physicochemical parameters were within the specified I. P limits. It was observed that the solid dispersion formulation ED5 showed better dissolution rate to the extent of 1.07 folds and 1.95 folds when compared to a marketed formulation and the pure drug, respectively. Similarly, pellet formulation EP5 containing 1:5 ratio of ezetimibe to soluplus showed an improved dissolution rate to the extent of 1.173 folds and 2.136 folds when compared to the marketed formulation and the pure drug, respectively. FTIR analysis revealed that there was no major interaction between the drug and the excipients.  Conclusion: From the present study, it was observed that the solubility of ezetimibe was enhanced by soluplus in pellet formulations when compared to solid dispersions.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 208
Author(s):  
Sergio Alexandre Gehrke ◽  
Raphaél Bettach ◽  
Benoit Cayron ◽  
Gilles Boukhris ◽  
Berenice Anina Dedavid ◽  
...  

The present in vitro study evaluated a new drill design to improve the temperature control during the osteotomies for dental implant installation, comparing with two drill designs that use conventional external irrigation. Three blocks of synthetic cortical bone were used for osteotomy procedures. Three groups were created: control group 1 (Con1), where a conical multiple drill system with a conventional external irrigation system was used; control group 2 (Con2), where a single bur with a conventional external irrigation system was used; and, test group (Test), where the new single bur (turbo drill) with a new irrigation system was used. Twenty osteotomies were made without irrigation and with intense irrigation, for each group. A thermocouple was used to measure the temperature produced during the osteotomies. The measured temperature were: 28.9 ± 1.68 °C for group Con1; 27.5 ± 1.32 °C for group Con2; 26.3 ± 1.28 °C for group Test. Whereas, the measured temperatures with irrigation were: 23.1 ± 1.27 °C for group Con1; 21.7 ± 1.36 °C for group Con2; 19.4 ± 1.29 °C for group Test. The single drill with a new design for improving the irrigation and temperature control, in comparison with the drill designs with conventional external irrigation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Mónica Faria ◽  
Vítor Geraldes ◽  
Maria Norberta de Pinho

Asymmetric bi-soft segment poly(ester urethane urea) (PEUU) membranes containing polycaprolactone (PCL) as a second soft segment are synthesized with PCL-diol ranging from 0% to 15% (w/w). Bulk and surface characteristics of the PEUU membranes were investigated by scanning electron microscopy (SEM), static water contact angles, and surface streaming potentials and were correlated to hemocompatibility properties, namely, hemolysis and thrombosis degrees. SEM analysis reveals PEUU membranes with asymmetric cross-sections and top dense surfaces with distinct morphologies. The increase in PCL-diol content yields PEUU membranes with blood-contacting surfaces that are smoother, more hydrophilic, and with higher maximum zeta potentials. The results obtained in this work give no evidence of a correlation between hydrophilicity/zeta potentials and the hemolysis/thrombosis degree of blood-contacting surfaces of the PEUU membranes. In contrast, other hemocompatibility aspects reveal that the more hydrophilic membranes are associated with lower platelet deposition and inhibition of extreme states of platelet activation.


2005 ◽  
Vol 19 (4) ◽  
pp. 278-283 ◽  
Author(s):  
Fábio Garcia Lima ◽  
Rafael Ratto de Moraes ◽  
Flávio Fernando Demarco ◽  
Francisco Augusto Burkert Del Pino ◽  
John Powers

The aim of this study was to compare the solvent volatilization rate and evaluate the sealing ability of different one-bottle adhesives that were in constant clinical use - an ethanol/water-based adhesive (Single Bond, 3M/ESPE - SB) and an acetone-based adhesive (Prime & Bond 2.1, Dentsply/Caulk - PB). Nine bottles of each agent were collected from the clinics of a dental school, and new ones were used as controls. The weight of all bottles and of empty bottles was determined using an analytical balance. A drop of each solution was dispensed onto the balance, taking its initial weight (IW) and, after 10 min, its final weight (FW). The IW/FW ratio was used to determine the solvent’s volatilization rate. The bottles with the highest evaporation levels (SB Control and PB Control) and with the lowest evaporation levels (SB Test and PB Test) of each agent were applied in Class V restorations with margins in dentin. Specimens were thermocycled and immersed in a 0.5% basic fuchsin solution. Dye penetration was evaluated under magnification and the data were submitted to the Kruskal-Wallis test. Solvent volatilization was faster for the acetone-based adhesive. IW/FW ratios ranged from 1.239 to 1.515 for SB, and from 3.488 to 6.476 for PB. The PB-Control and SB-Control groups exhibited similar microleakage patterns. The highest dye penetration scores were found for the PB-Test group (p < 0.05). Results indicate that the sealing ability can be affected by the repeated opening of acetone-based adhesive bottles.


Author(s):  
R.A. Milligan ◽  
P.N.T. Unwin

A detailed understanding of the mechanism of protein synthesis will ultimately depend on knowledge of the native structure of the ribosome. Towards this end we have investigated the low resolution structure of the eukaryotic ribosome embedded in frozen buffer, making use of a system in which the ribosomes crystallize naturally.The ribosomes in the cells of early chicken embryos form crystalline arrays when the embryos are cooled at 4°C. We have developed methods to isolate the stable unit of these arrays, the ribosome tetramer, and have determined conditions for the growth of two-dimensional crystals in vitro, Analysis of the proteins in the crystals by 2-D gel electrophoresis demonstrates the presence of all ribosomal proteins normally found in polysomes. There are in addition, four proteins which may facilitate crystallization. The crystals are built from two oppositely facing P4 layers and the predominant crystal form, accounting for >80% of the crystals, has the tetragonal space group P4212, X-ray diffraction of crystal pellets demonstrates that crystalline order extends to ~ 60Å.


2005 ◽  
Vol 173 (4S) ◽  
pp. 315-316
Author(s):  
Kari Hendlin ◽  
Brynn Lund ◽  
Manoj Monga

1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Sign in / Sign up

Export Citation Format

Share Document