scholarly journals In Vitro Effect of Replicated Porous Polymeric Nano-MicroStructured Biointerfaces Characteristics on Macrophages Behavior

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1913
Author(s):  
Luminita Nicoleta Dumitrescu ◽  
Madalina Icriverzi ◽  
Anca Bonciu ◽  
Anca Roșeanu ◽  
Antoniu Moldovan ◽  
...  

In the last decades, optimizing implant properties in terms of materials and biointerface characteristics represents one of the main quests in biomedical research. Modifying and engineering polyvinylidene fluoride (PVDF) as scaffolds becomes more and more attractive to multiples areas of bio-applications (e.g., bone or cochlear implants). Nevertheless, the acceptance of an implant is affected by its inflammatory potency caused by surface-induced modification. Therefore, in this work, three types of nano-micro squared wells like PVDF structures (i.e., reversed pyramidal shape with depths from 0.8 to 2.5 microns) were obtained by replication, and the influence of their characteristics on the inflammatory response of human macrophages was investigated in vitro. FTIR and X-ray photoelectron spectroscopy analysis confirmed the maintaining chemical structures of the replicated surfaces, while the topographical surface characteristics were evaluated by AFM and SEM analysis. Contact angle and surface energy analysis indicated a modification from superhydrophobicity of casted materials to moderate hydrophobicity based on the structure’s depth change. The effects induced by PVDF casted and micron-sized reversed pyramidal replicas on macrophages behavior were evaluated in normal and inflammatory conditions (lipopolysaccharide treatment) using colorimetric, microscopy, and ELISA methods. Our results demonstrate that the depth of the microstructured surface affects the activity of macrophages and that the modification of topography could influence both the hydrophobicity of the surface and the inflammatory response.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 773
Author(s):  
Judit Buxadera-Palomero ◽  
Maria Godoy-Gallardo ◽  
Meritxell Molmeneu ◽  
Miquel Punset ◽  
Francisco Javier Gil

Infections related to dental implants are a common complication that can ultimately lead to implant failure, and thereby carries significant health and economic costs. In order to ward off these infections, this paper explores the immobilization of triethoxysilylpropyl succinic anhydride (TESPSA, TSP) silane onto dental implants, and the interaction of two distinct monospecies biofilms and an oral plaque with the coated titanium samples. To this end, titanium disks from prior machining were first activated by a NaOH treatment and further functionalized with TESPSA silane. A porous sodium titanate surface was observed by scanning electron microscopy and X-ray photoelectron spectroscopy analyses confirmed the presence of TESPSA on the titanium samples (8.4% for Ti–N-TSP). Furthermore, a lactate dehydrogenase assay concluded that TESPSA did not have a negative effect on the viability of human fibroblasts. Importantly, the in vitro effect of modified surfaces against Streptococcus sanguinis, Lactobacillus salivarius and oral plaque were studied using a viable bacterial adhesion assay. A significant reduction was achieved in all cases but, as expected, with different effectiveness against simple mono-species biofilm (ratio dead/live of 0.4) and complete oral biofilm (ratio dead/live of 0.6). Nevertheless, this approach holds a great potential to provide dental implants with antimicrobial properties.


2019 ◽  
Vol 9 (4) ◽  
pp. 512-518
Author(s):  
Karthikeyan Muthu ◽  
Blessy Vijayakumar ◽  
Thirumurugan Alagu

Introduction: Cancer is one of the current leading cause of death all over the world. Among the various emerging technologies, nanotechnology plays a prominent role in delivering the drug to the target region. Materials and Methods: In this study, the In vitro effect of doxorubicin adsorbed gold nanoparticles synthesized by Azadirachta Indica leaves extract as reducing agent and the doxorubicin entrapped modified liposomes called transfersomes was compared over the cervical cancer cell line (HeLa cell lines). The synthesized gold nanoparticles were characterized using a UV-visible spectrophotometer, SEM analysis. Results: The UV-Visible spectrum showed the peak at 537nm and the incorporation of drug over the nanoparticles was conformed using FTIR and SEM analysis. The drug entrapment onto transfersomes was also characterized using FTIR and SEM analysis. When compared, the drug entrapped transfersomes shows significant effect with the lowest concentration of drug (0.25 µg/mL) than the drug adsorbed nanoparticles. Conclusion: Hence, the transfersomes may also become the promising drug carrier in the future.


2020 ◽  
Vol 131 ◽  
pp. 110497
Author(s):  
Bárbara Osmarin Turra ◽  
Fernanda Barbisan ◽  
Verônica Farina Azzolin ◽  
Cibele Ferreira Teixeira ◽  
Thamara Flores ◽  
...  

Author(s):  
Viswanadh Kunam ◽  
Vidyadhara Suryadevara ◽  
Devala Rao Garikapati ◽  
Venkata Basaveswara Rao Mandava ◽  
RLC Sasidhar

Objective: In the present investigation, an attempt was made to improve the surface characters and solubility of the drug by solid dispersion and coating it on the nonpareil sugar beads as pellets. Methods: Ezetimibe solid dispersions were prepared by kneading method using soluplus. Crospovidone was added as a disintegrant in pellets. Ezetimibe pellets were prepared by dissolving soluplus and crospovidone in ethanol in different ratios and coated on nonpareil sugar beads as a drug layer by pan coating technique. Various physicochemical parameters like particle size, friability, angle of repose and drug content were evaluated for the prepared solid dispersions and pellet formulations. In vitro dissolution studies were carried out in 1% SLS using USP apparatus II. FTIR and SEM analysis were performed for solid dispersions, pellet formulations and its polymers to determine the interactions and surface characteristics. Results: The physicochemical parameters were within the specified I. P limits. It was observed that the solid dispersion formulation ED5 showed better dissolution rate to the extent of 1.07 folds and 1.95 folds when compared to a marketed formulation and the pure drug, respectively. Similarly, pellet formulation EP5 containing 1:5 ratio of ezetimibe to soluplus showed an improved dissolution rate to the extent of 1.173 folds and 2.136 folds when compared to the marketed formulation and the pure drug, respectively. FTIR analysis revealed that there was no major interaction between the drug and the excipients.  Conclusion: From the present study, it was observed that the solubility of ezetimibe was enhanced by soluplus in pellet formulations when compared to solid dispersions.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lu-Yu Yang ◽  
Qin Luo ◽  
Lu Lu ◽  
Wen-Wei Zhu ◽  
Hao-Ting Sun ◽  
...  

Abstract Background The propensity of the activated neutrophils to form extracellular traps (NETs) is demonstrated in multiple inflammatory conditions. In this study, we investigated the roles of NETs in metastasis of hepatocellular carcinoma (HCC) and further explored the underlying mechanism of how NETs affect metastasis as well as the therapeutic value. Methods The neutrophils were isolated from the blood of human HCC patients and used to evaluate the formation of NETs. The expression of NET markers was detected in tumor specimens. A LPS-induced NET model was used to investigate the role of NETs on HCC metastasis. RNA-seq was performed to identify the key molecular event triggered by NETs, and their underlying mechanism and therapeutic significance were explored using both in vitro and in vivo assays. Results NET formation was enhanced in neutrophils derived from HCC patients, especially those with metastatic HCCs. NETs trapped HCC cells and subsequently induced cell-death resistance and enhanced invasiveness to trigger their metastatic potential, which was mediated by internalization of NETs into trapped HCC cells and activation of Toll-like receptors TLR4/9-COX2 signaling. Inhibition of TLR4/9-COX2 signaling abrogated the NET-aroused metastatic potential. A combination of DNase 1 directly wrecking NETs with anti-inflammation drugs aspirin/hydroxychloroquine effectively reduced HCC metastasis in mice model. Conclusions NETs trigger tumorous inflammatory response and fuel HCC metastasis. Targeting NETs rather than neutrophils themselves can be a practice strategy against HCC metastasis.


2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Maria Iris Hermanns ◽  
Jennifer Kasper ◽  
Peter Dubruel ◽  
Christine Pohl ◽  
Chiara Uboldi ◽  
...  

The alveolar region of the lung is an important target for drug and gene delivery approaches. Treatment with drugs is often necessary under pathophysiological conditions, in which there is acute inflammation of the target organ. Therefore, in vitro models of the alveolar-capillary barrier, which mimic inflammatory conditions in the alveolar region, would be useful to analyse and predict effects of novel drugs on healthy or inflamed tissues. The epithelial cell line H441 was cultivated with primary isolated human pulmonary microvascular endothelial cells (HPMECs) or the endothelial cell line ISO-HAS-1 on opposite sides of a permeable filter support under physiological and inflammatory conditions. Both epithelial and endothelial cell types grew as polarized monolayers in bilayer coculture and were analysed in the presence and absence of the proinflammatory stimuli tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). In addition, the nanocarrier polyethyleneimine (PEI) was chosen as a model compound to study cell uptake (Oregon Green (OG)-labelled PEI) and gene transfer (PEI–pDNA complex). Upon treatment with TNF-α and IFN-γ, both cocultures exhibited comparable effects on the trans-bilayer electrical resistance, the transport of sodium fluorescein and the increase in secondary cytokine release. Basolateral (endothelial side) exposure to TNF-α or simultaneous exposure to TNF-α and IFN-γ generated an alveolar-capillary barrier with inflammation-like characteristics, impaired barrier function and a local disruption of the continuous apical labelling of the tight junction plaque protein zonula occludens-1 (ZO-1). Although transfection rates of 8 per cent were obtained for H441 cells in non-polarized monocultures, apical–basolateral-differentiated (polarized) H441 in coculture could not be transfected. After basolateral cytokine exposure, uptake of fluorescently labelled PEI in polarized H441 was predominantly detected in those areas with a local disruption of ZO-1 expression. Accordingly, transfected cells were only sparsely found in coculture after basolateral costimulation with TNF-α and IFN-γ. We designed a coculture model that mimics both the structural architecture of the alveolar-capillary barrier and inflammatory mechanisms with consequences on barrier characteristics, cytokine production and nanoparticle interaction. Our model will be suitable to systematically study adsorption, uptake and trafficking of newly synthesized nanosized carriers under different physiological conditions.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1802
Author(s):  
Cornelia Wiegand ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Jörg Tittelbach

It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.


2021 ◽  
Vol 32 (4) ◽  
pp. 62-73
Author(s):  
Karla Lorene de França Leite ◽  
Thiago Isidro Vieira ◽  
Adílis Kalina Alexandria ◽  
Raphael Ferreira da Silva ◽  
Aline Saddock de Sá Silva ◽  
...  

Abstract This study aimed to evaluate the in vitro effect of a single application of experimental nanocomposite solutions on the prevention of dental caries around orthodontic brackets. The specimens were exposed to mesoporous silica (MS) nanocomposites containing fluoride by association with titanium tetrafluoride (TiF4) or sodium fluoride (NaF). Nanocomposites also could contain calcium and groups were described as MSCaTiF4, MSTiF4, MSCaNaF, MSNaF, and controls (TiF4, and NaF). Specimens were subjected to the formation of a multispecies biofilm to generate a cariogenic challenge. After 24h, both pH and total soluble fluoride concentration of the culture medium were assessed. Mineral loss was evaluated by percentage of surface mineral loss (%SML), mineral volume variation (ΔZ) of inner enamel and polarized light microscopy (PL). Linear (Ra) and volumetric (Sa) surface roughness and scanning electronic microscopy (SEM) were used to assess enamel topography. Statistical analyses were conducted considering p<0.05. MSNaF had the highest value of culture medium pH after cariogenic challenge, similarly to MSTiF4. All nanocomposite solutions released less fluoride than their controls NaF and TiF4 (p<0.05). All nanocomposite solutions presented lower %SML compared to their respective control groups (p<0.05). Lower Ra, Sa and ΔZ were observed for experimental groups compared to TiF4 (p<0.05). The results were confirmed by PL and SEM analysis. The experimental nanocomposite solutions contributed for lower enamel demineralization around orthodontic brackets.


2021 ◽  
Vol 22 (5) ◽  
pp. 2597
Author(s):  
Nagore Arroyo-Lamas ◽  
Iciar Arteagoitia ◽  
Unai Ugalde

Organic contaminants significantly limit the bioactivity of titanium implants, resulting in the degradation known as the ageing of titanium. To reactivate the surfaces, they can be photofunctionalized, i.e., irradiated with C-range ultraviolet (UVC) light. This descriptive in vitro study compares the effectiveness of novel light-emitting diode (LED) technology to remove contaminant hydrocarbons from three different commercially available titanium dental implants: THD, TiUnite, and SLA. The surface topography and morphology were characterized by scanning electron microscopy (SEM). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS), before and after the lighting treatment, by a pair of closely placed UVC (λ = 278 nm) and LED devices for 24 h. SEM analysis showed morphological differences at the macro- and micro-scopic level. XPS analysis showed a remarkable reduction in the carbon contents after the UVC treatment: from 25.6 to 19.5 C at. % (carbon atomic concentration) in the THD; from 30.2 to 20.2 C at. % in the TiUnite; from 26.1 to 19.2 C at. % in the SLA surface. Simultaneously, the concentration of oxygen and titanium increased. Therefore, LED-based UVC irradiation decontaminated titanium surfaces and improved the chemical features of them, regardless of the kind of surface.


2005 ◽  
Vol 475-479 ◽  
pp. 2349-2352
Author(s):  
Wei Cai ◽  
Y. Cheng ◽  
Y.F. Zheng ◽  
Hong Tao Li ◽  
Lian Cheng Zhao

Ti-50.6 at.% Ni shape memory alloy was coated with tantalum using multi arc ion-plating technique with the aim to increase its radiopacity and biocompatibility. The surface characteristics were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results of XPS survey spectra show that a thin oxide film are formed inside tantalum coating as a result of natural passivation of Ta in atmosphere. The hemocompatibility was evaluated in vitro by clotting time and platelet adhesion measurement. The results of our study showed that the clotting time of tantalum was higher than that of the TiNi alloys and no sign of accumulation and only slight pseudopodium was observed on the tantalum coatings, suggesting that the tantalum coatings can improve the biocompatibility of TiNi alloy.


Sign in / Sign up

Export Citation Format

Share Document