scholarly journals Nascent Adhesion Clustering: Integrin-Integrin and Integrin-Substrate Interactions

Biophysica ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 34-58
Author(s):  
Kuanpo Lin ◽  
Robert J. Asaro

Nascent adhesions (NAs) are a general precursor to the formation of focal adhesions (FAs) that provide a fundamental mechanism for cell adhesion that is, in turn, involved in cell proliferation, migration, and mechanotransduction. Nascent adhesions form when cells come into contact with substrates at all rigidities and generally involve the clustering of ligated integrins that may recruit un-ligated integrins. Nascent adhesions tend to take on characteristic sizes in the range of O(100nm–150nm) in diameter and tend to contain integrin numbers of O(20–60). The flexible, adaptable model we present provides and clear explanation of how these conserved cluster features come about. Our model is based on the interaction among ligated and un-ligated integrins that arise due to deformations that are induced in the cell membrane-cell glycocalyx and substrate system due to integrin activation and ligation. This model produces a clearly based interaction potential, and from it an explicit interaction force among integrins, that our stochastic diffusion-interaction simulations then show will produce nascent clusters with experimentally observed characteristics. Our simulations reveal effects of various key parameters related to integrin activation and ligation as well as some unexpected and previously unappreciated effects of parameters including integrin mobility and substrate rigidity. Moreover, the model’s structure is such that refinements are readily incorporated and specific suggestions are made as to what is required for further progress in understanding nascent clustering and the development of mature focal adhesions in a truly predictive manner.

2017 ◽  
Author(s):  
◽  
Huang Huang

It is well recognized that arterial stiffness increases with aging and aging-related diseases, such as hypertension. The mechanisms for the increase in stiffness have been largely thought to be the result of changes in the composition and structure of the extracellular matrix (ECM). However, recent evidence suggests that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) may also play an important role. The changes noted in VSMCs include an increase in cell stiffness and enhanced cell adhesion to the ECM protein fibronectin (FN). The stimuli that provoke these changes are not well known, nor are the underlying causes of these changes. In addition, previous work from our laboratory revealed that there is coordination between cell stiffness and cell adhesion to FN of VSMCs treated with vasoactive agents. VSMCs adhesion to ECM is largely mediated by the transmembrane receptors, integrins, which provide a physical connection between the cytoskeleton and ECM proteins. This unique molecular axis allows integrins to act as an ideal transducer for initiating signaling from both outside-in and inside-out signaling pathways. Integrin-mediated cell adhesion is known to play an important role in VSMCs normal function and it is also involved in various pathological conditions. Despite the growing body of evidence for the importance of integrins in vascular function and dysfunction, there are gaps in our knowledge concerning how integrin adhesion is linked to changes in VSMC mechanical properties and how integrin adhesions respond to dynamic mechanical stimulation. Therefore, my overall research goal was to better understand integrin adhesion behavior in VSMCs response to cellular and mechanical stimuli. Atomic force microscopy (AFM) was used to measure VSMC mechanical properties and adhesion to ECM as well as to provide a tool for applying mechanical stimulation to the VSMC. The first part of this research focuses on clarifying the mechanism of coordination between VSMC stiffness and adhesion to FN. We hypothesized that enhanced cell adhesion to FN is mediated by changes in the level of intracellular calcium ([Ca2+]i). To test this hypothesis, confocal imaging of fluo-4, a fluorescent calcium indicator, combined with AFM force spectroscopy were used simultaneously to record levels of[Ca2+]i and force-distance curves to measure VSMC mechanical properties and adhesion. The cell mechanical properties and adhesion to FN were correlated with levels of [Ca2+]i. KCl and BAPTA-AM were used to modulate the level of [Ca2+]i. KCl-treated VSMCs showed a rapid transient increase in cell stiffness as well as cell adhesion to FN, and these two events were synchronized with the superimposed transient increase in the level of [Ca2+]i. In contrast, VSMCs incubated with an intracellular calcium chelator, BAPTAAM, exhibited decrease in stiffness and cell adhesion to FN as well as reduced levels of [Ca2+]i. These findings suggest that in VSMCs integrin activation is linked to the level of [Ca2+]i. Further studies with ML-7pretreated cells to inhibit myosin light chain kinase showed KCl induced changes were not abolished, suggesting that calcium-induced integrin activation is not dependent on mechanical events associated with contraction or signaling events downstream of contraction. In the second part of my research integrin adhesion behavior was studied in VSMC focal adhesions subjected to oscillating mechanical stimulation. VSMCs from the aorta, a large elastic conduit artery, exposed to cyclic strain stress induced by heart rate-associated changes in pulse pressure, were selected for study. We worked together with applied mathematician scientists from the University of Nottingham. Through collaborative discussions, they developed a mathematical model to predict interactions between integrins and ECM during dynamic changes in mechanical stretch. In this study, my goal was to provide biological data to test and inform the model. We used the AFM with FN-coated probes and measured VSMC adhesion to the FN by applying vertically oscillating stretch to integrin focal adhesions. Our experimental data provided evidence to support model predictions that changes in the degree of mechanical stretch applied to an integrin adhesion would behave in a bistable manner. The bistability was manifest as a breakpoint or failure point at which integrin adhesions rupture and reform. The simulation model and experimental data indicate that the bistable behavior occurs during intermediate amplitude stretches between full detachment and no detachment. The data also indicated that the failure point for adhesion was dependent on the initial conditions of the adhesion and influenced by whether the adhesion was pre-existing or newly formed. These data suggest this bistability behavior could be an indication of a unique switch point in the nature of integrin signaling. In conclusion, this research has provided new information on integrin adhesion in response to inside-out cellular stimulation and outside-in dynamic mechanical stimulation. These data indicate the involvement of a calcium-related signaling pathway in VSMC integrin activation. In addition, these data show unique integrin adhesion behavior in response to a dynamic vs static physical environment. It is clear from this work that further studies will be needed to develop a whole picture and to understand the functional and pathological implications of mechanisms coordinating integrin adhesion with cell mechanical properties and the dynamic behavior of integrins.


Author(s):  
Shailaja Seetharaman ◽  
Benoit Vianay ◽  
Vanessa Roca ◽  
Chiara De Pascalis ◽  
Batiste Boëda ◽  
...  

AbstractMechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation, a tubulin post-translational modification, by promoting the recruitment of the alpha-tubulin acetyl transferase (αTAT1) to focal adhesions. Microtubule acetylation, in turn, promotes GEF-H1 mediated RhoA activation, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction, which contributes to mechanosensitive cell adhesion and migration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz4707 ◽  
Author(s):  
Rafael Tapia-Rojo ◽  
Alvaro Alonso-Caballero ◽  
Julio M. Fernandez

Vinculin binds unfolded talin domains in focal adhesions, which recruits actin filaments to reinforce the mechanical coupling of this organelle. However, it remains unknown how this interaction is regulated and its impact on the force transmission properties of this mechanotransduction pathway. Here, we use magnetic tweezers to measure the interaction between vinculin head and the talin R3 domain under physiological forces. For the first time, we resolve individual binding events as a short contraction of the unfolded talin polypeptide caused by the reformation of the vinculin-binding site helices, which dictates a biphasic mechanism that regulates this interaction. Force favors vinculin binding by unfolding talin and exposing the vinculin-binding sites; however, the coil-to-helix contraction introduces an energy penalty that increases with force, defining an optimal binding regime. This mechanism implies that the talin-vinculin-actin association could operate as a negative feedback mechanism to stabilize force on focal adhesions.


2021 ◽  
Author(s):  
Rosemarie E. Gough ◽  
Matthew C. Jones ◽  
Thomas Zacharchenko ◽  
Shimin Le ◽  
Miao Yu ◽  
...  

AbstractTalin is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behaviour of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronised phosphorylation of a large number of protein targets. CDK1 activity also maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesiveness that are required for successful completion of mitosis. Using a combination of biochemical, structural and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8 through the use of recombinant fragments. Talin also contains a consensus CDK1 phosphorylation motif centred on S1589; a site that was phosphorylated by CDK1in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of KANK and weakened the mechanical response of the region, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator, CDK1, to the primary integrin effector, talin, therefore provides a primordial solution for coupling the cell proliferation and cell adhesion machineries, and thereby enables microenvironmental control of cell division in multicellular organisms.SummaryThe direct binding of the master cell cycle regulator, CDK1, to the primary integrin effector, talin, provides a primordial solution for coupling the cell proliferation and cell adhesion machineries, and thereby enables microenvironmental control of cell division.


2021 ◽  
Author(s):  
Koichi Fukuda ◽  
Fan Lu ◽  
Jun Qin

AbstractRas suppressor-1 (Rsu-1) is a leucine-rich repeat (LRR)-containing protein that is crucial for regulating fundamental cell adhesion processes and tumor development. Rsu-1 interacts with a zinc-finger type multi LIM domain-containing adaptor protein PINCH-1 involved in the integrin-mediated consensus adhesome but not with highly homologous isoform PINCH-2. However, the structural basis for such specific interaction and regulatory mechanism remains unclear. Here, we determined the crystal structures of Rsu-1 and its complex with the PINCH-1 LIM4-5 domains. Rsu-1 displays an arc-shaped solenoid architecture with eight LRRs shielded by the N- and C-terminal capping modules. We show that a large conserved concave surface of the Rsu-1 LRR domain recognizes the PINCH-1 LIM5 domain, and that the C-terminal non-LIM region of PINCH-2 but not PINCH-1 sterically disfavors the Rsu-1 binding. We further show that Rsu-1 can be assembled, via PINCH-1-binding, into a tight hetero-pentamer complex comprising Rsu-1, PINCH-1, ILK, Parvin, and Kindlin-2 that constitute a major consensus integrin adhesome crucial for focal adhesion assembly. Consistently, our mutagenesis and cell biological data consolidate the significance of the Rsu-1/PINCH-1 interaction in focal adhesion assembly and cell spreading. Our results provide a crucial molecular insight into Rsu-1-mediated cell adhesion with implication on how it may regulate tumorigenic growth.


2003 ◽  
Vol 13 (13) ◽  
pp. R528-R530 ◽  
Author(s):  
Michel Labouesse ◽  
Elisabeth Georges-Labouesse

Sign in / Sign up

Export Citation Format

Share Document