scholarly journals Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1

2021 ◽  
Author(s):  
Rosemarie E. Gough ◽  
Matthew C. Jones ◽  
Thomas Zacharchenko ◽  
Shimin Le ◽  
Miao Yu ◽  
...  

AbstractTalin is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behaviour of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronised phosphorylation of a large number of protein targets. CDK1 activity also maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesiveness that are required for successful completion of mitosis. Using a combination of biochemical, structural and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8 through the use of recombinant fragments. Talin also contains a consensus CDK1 phosphorylation motif centred on S1589; a site that was phosphorylated by CDK1in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of KANK and weakened the mechanical response of the region, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator, CDK1, to the primary integrin effector, talin, therefore provides a primordial solution for coupling the cell proliferation and cell adhesion machineries, and thereby enables microenvironmental control of cell division in multicellular organisms.SummaryThe direct binding of the master cell cycle regulator, CDK1, to the primary integrin effector, talin, provides a primordial solution for coupling the cell proliferation and cell adhesion machineries, and thereby enables microenvironmental control of cell division.

1998 ◽  
Vol 18 (12) ◽  
pp. 7487-7498 ◽  
Author(s):  
Sheng Wang ◽  
Richik N. Ghosh ◽  
Srikumar P. Chellappan

ABSTRACT Cells initiate proliferation in response to growth factor stimulation, but the biochemical mechanisms linking signals received at the cell surface receptors to the cell cycle regulatory molecules are not yet clear. In this study, we show that the signaling molecule Raf-1 can physically interact with Rb and p130 proteins in vitro and in vivo and that this interaction can be detected in mammalian cells without overexpressing any component. The binding of Raf-1 to Rb occurs subsequent to mitogen stimulation, and this interaction can be detected only in proliferating cells. Raf-1 can inactivate Rb function and can reverse Rb-mediated repression of E2F1 transcription and cell proliferation efficiently. The region of Raf-1 involved in Rb binding spanned residues 1 to 28 at the N terminus, and functional inactivation of Rb required a direct interaction. Serum stimulation of quiescent human fibroblast HSF8 cells led to a partial translocation of Raf-1 into the nucleus, where it colocalized with Rb. Further, Raf-1 was able to phosphorylate Rb in vitro quite efficiently. We believe that the physical interaction of Raf-1 with Rb is a vital step in the growth factor-mediated induction of cell proliferation and that Raf-1 acts as a direct link between cell surface signaling cascades and the cell cycle machinery.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4149-4149
Author(s):  
Florencia Palacios ◽  
Xiao-Jie Yan ◽  
Jaqueline C. Barrientos ◽  
Jonathan E. Kolitz ◽  
Steven L. Allen ◽  
...  

Abstract Chronic Lymphocytic Leukemia (CLL) is an incurable disease in which most of the tumor cells in the blood are arrested in G0/G1 stages of the cell cycle with only a minimal number displaying proliferative activity. In this regard, our group has found by gene expression profiling (GEP) that the proliferative fraction (PF) of CLL cells is enriched in the intraclonal subset marked by CXCR4dim CD5brite expression. Indeed, this subset differs by more than 1000 genes from the CXCR4brite CD5dim resting fraction (RF). The genes over-expressed in the PF relate to replication and migration as well as regulation of gene expression. One of these genes is Musashi 2 (MSI2). Of note, MSI2 is expressed at the highest levels in IGHV unmutated CLL (U-CLL) clones and their PFs. Normally, MSI2 binds mRNA and blocks translation of proteins, playing an important role in post-transcriptional regulation. In addition, MSI2 has been linked to proliferation of normal and malignant stem cells, tumorigenesis, and poor prognosis. In CLL, high MSI2 mRNA expression has been identified in patients with worse prognosis. Nevertheless, nothing is known about the function of MSI2 in CLL cells. Therefore, we have begun to study the biological role of MSI2 in B-CLL cells and its possible association with B-cell proliferation and CLL disease progression. Fist, we studied MSI2 protein expression by flow cytometry in CD19+ B cells from healthy donors (HD) and CD5+CD19+ cells from CLL patients, observing an up-regulation in CLL compared to HD. Also, we documented higher MSI2 expression in U-CLL compared to IGHV-mutated (M-CLL) CLL as well as HD. Within the leukemic clone, we observed that MSI2 expression was highest in the PF, lower in the intermediate (INT) fraction (defined as CXCR4int CD5int), and much lower in the RF (PF>INT>RF). The PF expressed 40% more MSI2 than the RF, suggesting that the highest amounts of MSI2 protein is in dividing and recently-divided cells of the clone. Since CLL B-cell proliferation occurs in the microenvironment of lymphoid organs, presumably delivered by external signals, we tested whether such signals could stimulate MSI2 expression. After stimulating CLL cells with TLR9 agonist + IL15 + IL2 in vitro MSI2 protein was up-regulated form 0.3 to 2.5 fold. In addition, the increase in MSI2 protein was associated with an enhancement in Ki-67+ cells and in phosphorylation of MAPK/ERK and AKT signaling components, measured by flow cytometry. These results suggest that signals from the microenvironment that induce cell growth and proliferation lead to MSI2 synthesis in CLL B cells. In order to study a possible association between MSI2 expression and cell division, we labeled CLL PBMCs with a dilutable cell tracer, CFSE, and then stimulated them in vitro with TLR9 agonist + IL15 + IL2. These studies indicated that MSI2 protein synthesis was increased in the activated cells and that MSI2 protein levels increased with each cell division. However, it was also clear that this increase was not directly associated to the extent of cell replication as CLL B cells from only 10% of the patients underwent 4 cycles of cell division. Since we observed an increase in MSI2 and Ki-67 expression after stimulation in all patients' clones but did not detect replication of CLL cells in all patients, we studied the effects of in vitro stimulation on cell cycle entry and completion and how this related to MSI2 expression. Experiments using propidium iodide to evaluate DNA content of PBMCs showed that in vitro stimulation increased the percentage of cells in S phase (5-25%) compared to control cells without activation (<5%), whereas only a small fraction of cells entered the M/G2 phases, with or without activation (<1% and <0.5%, respectably) suggesting that only a small portion of the cells completed the cell cycle and divided. Hence, MSI2 synthesis corresponds with DNA replication and not cell division, suggesting that MSI2 could be an important molecule involved in entry into and/or in the early phases of the cell cycle. These results, and the facts that MSI2 plays an important role in post-transcriptional regulation and is associated with cell proliferation and poor prognosis in cancer, suggest that a better understanding of the role of MSI2 in CLL patients will provide clues to understanding the birth and growth of CLL B cells and to identifying and designing new therapeutic strategies for the disease. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 35 (23) ◽  
pp. 4043-4052 ◽  
Author(s):  
Junyue Xing ◽  
Jie Yi ◽  
Xiaoyu Cai ◽  
Hao Tang ◽  
Zhenyun Liu ◽  
...  

The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without alteringCDK1mRNA levels. Further studies revealed that NSun2 methylatedCDK1mRNAin vitroand in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle.


2019 ◽  
Vol 7 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Magdalena Kulus ◽  
Małgorzata Józkowiak ◽  
Jakub Kulus ◽  
Małgorzata Popis ◽  
Blanka Borowiec ◽  
...  

AbstractMorphological and biochemical changes in the cells surrounding the oocyte seem to be extremely important in an effective fertilization process. Thanks to advanced cell culture techniques, as well as biochemical and bioinformatics analyses, we can partly imitate the phenomena occurring in the living organism. Previous studies showed a possibility of short – and long – term OEC in vitro cultivation, during which these cells have shown to have significant proliferation and expression of genes responsible for differentiation. Our research was aimed at maintaining a culture of porcine oviduct epithelial cells and analyzing their gene expression profile. The study employed cross-bred gilts at the age of about 9 months, obtained from commercial herds. With the use of Affymetrix® Porcine Gene 1.1 ST Array Strip, we have examined the expression of 12257 transcripts. Genes with fold change higher than abs (2) and with corrected p-value lower than 0.05 were considered as differentially expressed. We chose 20 genes with the most marked expression (10 up – regulated, 10 down – regulated) for further investigation in the context of literature sources. These genes belonged to three ontological groups: “cell cycle process”, “cell division” and “cell proliferation”. The results obtained from these studies may be the basis for further molecular analyses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Chen-Hua Dong ◽  
Tao Jiang ◽  
Hang Yin ◽  
Hu Song ◽  
Yi Zhang ◽  
...  

AbstractColorectal cancer is the second common cause of death worldwide. Lamin B2 (LMNB2) is involved in chromatin remodeling and the rupture and reorganization of nuclear membrane during mitosis, which is necessary for eukaryotic cell proliferation. However, the role of LMNB2 in colorectal cancer (CRC) is poorly understood. This study explored the biological functions of LMNB2 in the progression of colorectal cancer and explored the possible molecular mechanisms. We found that LMNB2 was significantly upregulated in primary colorectal cancer tissues and cell lines, compared with paired non-cancerous tissues and normal colorectal epithelium. The high expression of LMNB2 in colorectal cancer tissues is significantly related to the clinicopathological characteristics of the patients and the shorter overall and disease-free cumulative survival. Functional analysis, including CCK8 cell proliferation test, EdU proliferation test, colony formation analysis, nude mouse xenograft, cell cycle, and apoptosis analysis showed that LMNB2 significantly promotes cell proliferation by promoting cell cycle progression in vivo and in vitro. In addition, gene set enrichment analysis, luciferase report analysis, and CHIP analysis showed that LMNB2 promotes cell proliferation by regulating the p21 promoter, whereas LMNB2 has no effect on cell apoptosis. In summary, these findings not only indicate that LMNB2 promotes the proliferation of colorectal cancer by regulating p21-mediated cell cycle progression, but also suggest the potential value of LMNB2 as a clinical prognostic marker and molecular therapy target.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


2002 ◽  
Vol 45 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Farzana Khan ◽  
Jianzhong Tang ◽  
Chang-le Qin ◽  
Kami Kim

2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document