scholarly journals A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening

Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 369
Author(s):  
Meysam Rezaei ◽  
Sajad Razavi Bazaz ◽  
Dorsa Morshedi Rad ◽  
Olga Shimoni ◽  
Dayong Jin ◽  
...  

The COVID-19 pandemic has changed people’s lives and has brought society to a sudden standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these measurements and reduce society’s burden, developing an easy-to-use, rapid, and portable system to detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed circuit board, a cooler fan, a proportional integral derivative controller to control the temperature, and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of 35 copies of the virus per microliter, which is significant and has the capability of being used in crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected with SARS-CoV-2. We believe the current methodology that we have implemented in this article is beneficial for the early screening of infectious diseases, in which fast screening with high accuracy is necessary.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 741 ◽  
Author(s):  
Gorachand Dutta ◽  
Anna Regoutz ◽  
Despina Moschou

Here we report the first PCB-implemented electrochemical glucose biosensor usingcovalently immobilized glucose oxidase (GOx) on the commercially fabricated PCB electrodesurface, taking particular care on the electrode surface characteristics and their effect on sensorperformance. Based on the results, this assay exhibits a highly linear response from 500 μM to 20mM (R = 0.9961) and a lower limit of detection of 500 μM.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 575 ◽  
Author(s):  
Gorachand Dutta ◽  
Abdoulie A. Jallow ◽  
Debjani Paul ◽  
Despina Moschou

This paper reports for the first time printed-circuit-board (PCB)-based label-free electrochemical detection of bacteria. The demonstrated immunosensor was implemented on a PCB sensing platform which was designed and fabricated in a standard PCB manufacturing facility. Bacteria were directly captured on the PCB sensing surface using a specific, pre-immobilized antibody. Electrochemical impedance spectra (EIS) were recorded and used to extract the charge transfer resistance (Rct) value for the different bacteria concentrations under investigation. As a proof-of-concept, Streptococcus mutans (S. mutans) bacteria were quantified in a phosphate buffered saline (PBS) buffer, achieving a limit of detection of 103 CFU/mL. Therefore, the proposed biosensor is an attractive candidate for the development of a simple and robust point-of-care diagnostic platform for bacteria identification, exhibiting good sensitivity, high selectivity, and excellent reproducibility.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


Author(s):  
Norman J. Armendariz ◽  
Prawin Paulraj

Abstract The European Union is banning the use of Pb in electronic products starting July 1st, 2006. Printed circuit board assemblies or “motherboards” require that planned CPU sockets and BGA chipsets use lead-free solder ball compositions at the second level interconnections (SLI) to attach to a printed circuit board (PCB) and survive various assembly and reliability test conditions for end-use deployment. Intel is pro-actively preparing for this anticipated Pb ban, by evaluating a new lead free (LF) solder alloy in the ternary Tin- Silver-Copper (Sn4.0Ag0.5Cu) system and developing higher temperature board assembly processes. This will be pursued with a focus on achieving the lowest process temperature required to avoid deleterious higher temperature effects and still achieve a metallurgically compatible solder joint. One primary factor is the elevated peak reflow temperature required for surface mount technology (SMT) LF assembly, which is approximately 250 °C compared to present eutectic tin/lead (Sn37Pb) reflow temperatures of around 220 °C. In addition, extended SMT time-above-liquidus (TAL) and subsequent cooling rates are also a concern not only for the critical BGA chipsets and CPU BGA sockets but to other components similarly attached to the same PCB substrate. PCBs used were conventional FR-4 substrates with organic solder preservative on the copper pads and mechanical daisychanged FCBGA components with direct immersion gold surface finish on their copper pads. However, a materials analysis method and approach is also required to characterize and evaluate the effect of low peak temperature LF SMT processing on the PBA SLI to identify the absolute limits or “cliffs” and determine if the minimum processing temperature and TAL could be further lowered. The SLI system is characterized using various microanalytical techniques, such as, conventional optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and microhardness testing. In addition, the SLI is further characterized using macroanalytical techniques such as dye penetrant testing (DPT) with controlled tensile testing for mechanical strength in addition to disbond and crack area mapping to complete the analysis.


Author(s):  
O. Crépel ◽  
Y. Bouttement ◽  
P. Descamps ◽  
C. Goupil ◽  
P. Perdu ◽  
...  

Abstract We developed a system and a method to characterize the magnetic field induced by circuit board and electronic component, especially integrated inductor, with magnetic sensors. The different magnetic sensors are presented and several applications using this method are discussed. Particularly, in several semiconductor applications (e.g. Mobile phone), active dies are integrated with passive components. To minimize magnetic disturbance, arbitrary margin distances are used. We present a system to characterize precisely the magnetic emission to insure that the margin is sufficient and to reduce the size of the printed circuit board.


Sign in / Sign up

Export Citation Format

Share Document