scholarly journals Diazonium-Modified Screen-Printed Electrodes for Immunosensing Growth Hormone in Blood Samples

Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 88 ◽  
Author(s):  
Nan Li ◽  
Ari M. Chow ◽  
Hashwin V. S. Ganesh ◽  
Melanie Ratnam ◽  
Ian R. Brown ◽  
...  

Altered growth hormone (GH) levels represent a major global health challenge that would benefit from advances in screening methods that are rapid and low cost. Here, we present a miniaturized immunosensor using disposable screen-printed carbon electrodes (SPCEs) for the detection of GH with high sensitivity. The diazonium-based linker layer was electrochemically deposited onto SPCE surfaces, and subsequently activated using covalent agents to immobilize monoclonal anti-GH antibodies as the sensing layer. The surface modifications were monitored using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The dissociation constant, Kd, of the anti-GH antibodies was also determined as 1.44 (±0.15) using surface plasmon resonance (SPR). The immunosensor was able to detect GH in the picomolar range using a 20 µL sample volume in connection with electrochemical impedance spectroscopy (EIS). The selectivity of the SPCE-based immunosensors was also challenged with whole blood and serum samples collected at various development stages of rats, demonstrating the potential applicability for detection in biological samples. Our results demonstrated that SPCEs provided the development of low-cost and single-use electrochemical immunosensors in comparison with glassy carbon electrode (GCE)-based ones.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 251 ◽  
Author(s):  
Ayman H. Kamel ◽  
Samar Ezzat ◽  
Mona A. Ahmed ◽  
Abd El-Galil E. Amr ◽  
Abdulrahman A. Almehizia ◽  
...  

Potentiometric sensors have a great influence on the determination of most various compounds in their matrices. Therefore, efficient and new sensors were introduced to measure sodium Deoxycholate (NaDC) as a bile acid salt. These sensors are based on NaDC imprinted polymer (MIP) as sensory element. The MIP beads were synthesized using thermal polymerization pathway, in which acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA), NaDC, and benzoyl peroxide (BPO) were used as the functional monomer, cross-linker, template, and initiator, respectively. The proposed sensors were fabricated using a coated screen-printed platform and the sensing membrane was modified by single-walled carbon nanotubes (SWCNTs) as an ion-to-electron transducer. The sensors exhibited high sensitivity that reached 4.7 × 10−5 M of near-Nernestian slope (−60.1 ± 0.9 mV/decade, r2 = 0.999 (n= 5)). In addition, the sensors revealed high selectivity, long lifetime, high potential stability, and conductivity that ensure reproducible and accurate results over a long time. MIP characterization was performed using Fourier Transform-Infrared (FT-IR) and a scanning electron microscope (SEM). Regarding the interaction of NaDC with serum albumin (SA), albumin is determined in human serum samples as human serum albumin (HSA), which was collected from different volunteers of different ages and gender.


2013 ◽  
Vol 61 (2) ◽  
Author(s):  
Mohamad Faizal Abdullah ◽  
P. L. Leow ◽  
M. A. Abd Razak ◽  
F. K. Che Harun

Significant attention has been given on the development of droplets–based microfluidic system because of its potential and apparent advantages. Beside the advantages of reducing the sample volume, it’s also offer less time consuming for the analysis. Optical and fluorescence among the famous method that was used in detection of droplets but they are normally bulky, expensive and not easily accessed. This paper proposed a simple, low cost and high sensitivity for droplets sensing in microfluidic devices by using capacitive sensor. Coplanar electrodes are used to form a capacitance through the microfluidic channel. The design of eight pair of electrodes was used to detect the presence of a droplet. Changes in capacitance due to the presence of a droplet in the sensing area is detected and used to trigger the microscope to capture the image of detected droplets in microchannel. The measurement of droplets detected and counting are displayed through a LABVIEW interface in the real time.


2014 ◽  
Vol 13 (4) ◽  
pp. 454-459
Author(s):  
Shaheen Shaheen ◽  
Rajyashri Sharma ◽  
Rashi Rashi

Objective: To evaluate the feasibility and validity of visual inspection of the cervix with acetic acid (VIA) for screening cervical intraepithelial neoplasia. Materials and Methods: In this study, 942 women recruited from gynecology outpatient clinic, were screened using the Papanicolaou (PAP) smear, and VIA. The sensitivity and specificity of both the screening methods were analyzed. Results: VIA was positive in 29.3%. The sensitivity of VIA (74.16%) was much higher than that of the Pap smear (47.83%). The specificity of VIA (50.00%) was lower than that of the Pap smear (74.16%), resulting in high false-positive rates for VIA. Conclusion: Visual inspection of the cervix with acetic acid is sensitive for ecto-cervical lesions. The advantage of the VIA method lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening program in developing countries. DOI: http://dx.doi.org/10.3329/bjms.v13i4.15019 Bangladesh Journal of Medical Science Vol.13(4) 2014 p.454-459


2019 ◽  
Author(s):  
Zachary Ballard ◽  
Hyou-Arm Joung ◽  
Artem Goncharov ◽  
Jesse Liang ◽  
Karina Nugroho ◽  
...  

ABSTRACTWe present a deep learning-based framework to design and quantify point-of-care sensors. As its proof-of-concept and use-case, we demonstrated a low-cost and rapid paper-based vertical flow assay (VFA) for high sensitivity C-Reactive Protein (hsCRP) testing, a common medical test used for quantifying the degree of inflammation in patients at risk of cardio-vascular disease (CVD). A machine learning-based sensor design framework was developed for two key tasks: (1) to determine an optimal configuration of immunoreaction spots and conditions, spatially-multiplexed on a paper-based sensing membrane, and (2) to accurately infer the target analyte concentration based on the signals of the optimal VFA configuration. Using a custom-designed mobile-phone based VFA reader, a clinical study was performed with 85 human serum samples to characterize the quantification accuracy around the clinically defined cutoffs for CVD risk stratification. Results from blindly-tested VFAs indicate a competitive coefficient of variation of 11.2% with a linearity of R2 = 0.95; in addition to the success in the high-sensitivity CRP range (i.e., 0-10 mg/L), our results further demonstrate a mitigation of the hook-effect at higher CRP concentrations due to the incorporation of antigen capture spots within the multiplexed sensing membrane of the VFA. This paper-based computational VFA that is powered by deep learning could expand access to CVD health screening, and the presented machine learning-enabled sensing framework can be broadly used to design cost-effective and mobile sensors for various point-of-care diagnostics applications.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
S. P. O’Brien ◽  
J. Christudasjustus ◽  
L. Esteves ◽  
S. Vijayan ◽  
J. R. Jinschek ◽  
...  

AbstractA compositionally complex alloy was designed, consisting of equiatomic concentrations of four low-cost commodity elements (Al, Fe, Mn, and Si). The alloy was characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The corrosion of the AlFeMnSi alloy, as evaluated using potentiodynamic polarization tests and electrochemical impedance spectroscopy in 0.6 M NaCl solution, was comparable with that of stainless steel (SS) 304L. Detailed X-ray photoelectron spectroscopy analysis was carried out, including the determination of high-resolution spectra and surface sputtering. In addition, scanning transmission electron microscopy was also used to study the surface film(s) developed after constant immersion. The AlFeMnSi alloy exhibited a unique form of ‘passivity’ that arises from the development of a silicon-rich surface film from dynamic incongruent dissolution.


2021 ◽  
Author(s):  
Perrine Lasserre ◽  
Banushan Balansethupathy ◽  
Vincent J. Vezza ◽  
Adrian Butterworth ◽  
Alexander MacDonald ◽  
...  

SARS-CoV-2 diagnostic practices broadly involve either qPCR based nucleic amplification or lateral flow assays (LFAs). qPCR based techniques suffer from the disadvantage of requiring thermal cycling (difficult to implement for low-cost field use) leading to limitation on sample to answer time, the potential to amplify viral RNA sequences after a person is no longer infectious and being reagent intense. LFA performance is restricted by qualitative or semi-quantitative readouts, limits on sensitivity and poor reproducibility. Electrochemical biosensors, and particularly glucose test strips, present an appealing platform for development of biosensing solutions for SARS-CoV-2 as they can be multiplexed and implemented at very low cost at point of use with high sensitivity and quantitative digital readout. This work reports the successful raising of an Opti-mer sequence for the spike protein of SARS-CoV-2 and then development of an impedimetric biosensor which utilises thin film gold sensors on low-cost laminate substrates from home blood glucose monitoring. Clinically relevant detection levels for SARS-CoV-2 are achieved in a simple, label-free measurement format using sample incubation times of 15 minutes. The biosensor developed here is compatible with mass manufacture, is sensitive and low-cost CE marked readout instruments already exist. These findings pave the way to a low cost and mass manufacturable test with the potential to overcome the limitations associated with current technologies.


2020 ◽  
Author(s):  
Sean O'Brien ◽  
Luiza Esteves ◽  
Nick Birbilis ◽  
Rajeev Gupta

A new class of compositionally complex alloy, consisting of equiatomic concentrations of Al, Fe, Mn and Si is reported. The alloy was characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Corrosion behavior of the AlFeMnSi alloy, as evaluated using potentiodynamic polarization tests and electrochemical impedance spectroscopy in 0.6 M NaCl solution, was comparable with that of stainless steel (SS) 304L. X-ray photoelectron spectroscopy was used to study the AlFeMnSi surface film. The AlFeMnSi alloy also exhibited a lower cost, lower density, and a higher hardness as compared with SS 304L, rendering it a promising alloy for bespoke applications.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1322 ◽  
Author(s):  
Xiaopeng Hou ◽  
Benhai Xiong ◽  
Yue Wang ◽  
Li Wang ◽  
Hui Wang

Cadmium (Cd) and lead (Pb) in decorative materials threaten human health. To determine the content of Cd(II) and Pb(II), a disposable screen-printed electrode (DSPE) electrically modified with reduced graphene oxide (rGO) and L-cysteine (LC) was fabricated, which was further electroplated with bismuth film (Bi/LC-rGO/DSPE) in situ. The electrochemical properties of this electrode were studied using cyclic voltammetry, electrochemical impedance spectroscopy, linear sweep voltammetry and differential pulse voltammetry. The results indicated that the Bi/LC-rGO/DSPE had excellent sensitivity, selectivity and stability with low cost and easy production. After optimizing the detection parameters, the linear range of the Bi/LC-rGO/DSPE was from 1.0 to 30.0 μg/L for Cd(II) and Pb(II), and the detection limits were 0.10 μg/L for Cd(II) and 0.08 μg/L for Pb(II). Finally, the Bi/LC-rGO/DSPE was applied to determine the concentrations of Cd(II) and Pb(II) in different decorative materials where the recoveries were in the range from 95.86% to 106.64%.


Sign in / Sign up

Export Citation Format

Share Document