scholarly journals MaDoPO: Magnetic Detection of Positions and Orientations of Segmented Deep-Brain Stimulation Electrodes: A Radiation-Free Method Based on Magnetoencephalography

2022 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Mevlüt Yalaz ◽  
Nicholas Maling ◽  
Günther Deuschl ◽  
León M. Juárez-Paz ◽  
Markus Butz ◽  
...  

Background: Current approaches to detect the positions and orientations of directional deep-brain stimulation (DBS) electrodes rely on radiative imaging data. In this study, we aim to present an improved version of a radiation-free method for magnetic detection of the position and the orientation (MaDoPO) of directional electrodes based on a series of magnetoencephalography (MEG) measurements and a possible future solution for optimized results using emerging on-scalp MEG systems. Methods: A directional DBS system was positioned into a realistic head–torso phantom and placed in the MEG scanner. A total of 24 measurements of 180 s each were performed with different predefined electrode configurations. Finite element modeling and model fitting were used to determine the position and orientation of the electrode in the phantom. Related measurements were fitted simultaneously, constraining solutions to the a priori known geometry of the electrode. Results were compared with the results of the high-quality CT imaging of the phantom. Results: The accuracy in electrode localization and orientation detection depended on the number of combined measurements. The localization error was minimized to 2.02 mm by considering six measurements with different non-directional bipolar electrode configurations. Another six measurements with directional bipolar stimulations minimized the orientation error to 4°. These values are mainly limited due to the spatial resolution of the MEG. Moreover, accuracies were investigated as a function of measurement time, number of sensors, and measurement direction of the sensors in order to define an optimized MEG device for this application. Conclusion: Although MEG introduces inaccuracies in the detection of the position and orientation of the electrode, these can be accepted when evaluating the benefits of a radiation-free method. Inaccuracies can be further reduced by the use of on-scalp MEG sensor arrays, which may find their way into clinics in the foreseeable future.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandre Boutet ◽  
Radhika Madhavan ◽  
Gavin J. B. Elias ◽  
Suresh E. Joel ◽  
Robert Gramer ◽  
...  

AbstractCommonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming.


2018 ◽  
Author(s):  
Andreas Horn ◽  
Ningfei Li ◽  
Till A Dembek ◽  
Ari Kappel ◽  
Chadwick Boulay ◽  
...  

AbstractDeep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural / functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient’s preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the method of choice.This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.


Cephalalgia ◽  
2008 ◽  
Vol 28 (7) ◽  
pp. 799-803 ◽  
Author(s):  
A May

Recently, functional imaging data have underscored the crucial role of the hypothalamus in trigemino-autonomic headaches, a group of severe primary headaches. This prompted the application of hypothalamic deep-brain stimulation (DBS), with the intention to preventing cluster headache (CH) attacks in selected severe therapy-refractory cases. To date, a total of 50 operated intractable CH patients, one patient with short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing and three with atypical facial pain, have been reported. However, it is not apparent why the spontaneous bursts of activation in the inferior posterior hypothalamus result in excruciating head pain, whereas continuous electrical stimulation of the identical area is able to prevent these attacks. Recently, this issue has been addressed by examining 10 operated chronic CH patients, using H215O-positron emission tomography and alternately switching the hypothalamic stimulator on and off. The stimulation-induced activation in the ipsilateral posterior inferior hypothalamic grey (the site of the stimulator tip) as well as activation and de-activation in several cerebral structures belonging to neuronal circuits usually activated in pain transmission. These data argue against an unspecific antinociceptive effect or pure inhibition of hypothalamic activity as the mode of action of hypothalamic DBS and suggest functional modulation of the pain-processing network.


2021 ◽  
Author(s):  
Cristina V. Torres Diaz ◽  
Gabriel González-Escamilla ◽  
Dumitru Ciolac ◽  
Marta Navas García ◽  
Paloma Pulido Rivas ◽  
...  

AbstractDeep brain stimulation (DBS), specifically thalamic DBS, has achieved promising results to reduce seizure severity and frequency in pharmacoresistant epilepsies, thereby establishing it for clinical use. The mechanisms of action are, however, still unknown. We evidenced the brain networks directly modulated by centromedian (CM) nucleus-DBS and responsible for clinical outcomes in a cohort of patients uniquely diagnosed with generalized pharmacoresistant epilepsy. Preoperative imaging and long-term (2–11 years) clinical data from ten generalized pharmacoresistant epilepsy patients (mean age at surgery = 30.8 ± 5.9 years, 4 female) were evaluated. Volume of tissue activated (VTA) was included as seeds to reconstruct the targeted network to thalamic DBS from diffusion and functional imaging data. CM-DBS clinical outcome improvement (> 50%) appeared in 80% of patients and was tightly related to VTAs interconnected with a reticular system network encompassing sensorimotor and supplementary motor cortices, together with cerebellum/brainstem. Despite methodological differences, both structural and functional connectomes revealed the same targeted network. Our results demonstrate that CM-DBS outcome in generalized pharmacoresistant epilepsy is highly dependent on the individual connectivity profile, involving the cerebello-thalamo-cortical circuits. The proposed framework could be implemented in future studies to refine stereotactic implantation or the parameters for individualized neuromodulation.


2019 ◽  
Vol 8 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Kathrin Badstübner ◽  
Marco Stubbe ◽  
Thomas Kröger ◽  
Eilhard Mix ◽  
Jan Gimsa

Abstract An animal model of deep brain stimulation (DBS) was used in in vivo studies of the encapsulation process of custom-made platinum/iridium microelectrodes in the subthalamic nucleus of hemiparkinsonian rats via electrical impedance spectroscopy. Two electrode types with 100-μm bared tips were used: i) a unipolar electrode with a 200-μm diameter and a subcutaneous gold wire counter electrode and ii) a bipolar electrode with two parallelshifted 125-μm wires. Miniaturized current-controlled pulse generators (130 Hz, 200 μA, 60 μs) enabled chronic DBS of the freely moving animals. A phenomenological electrical model enabled recalculation of the resistivity of the wound tissue around the electrodes from daily in vivo recordings of the electrode impedance over two weeks. In contrast to the commonly used 1 kHz impedance, the resistivity is independent of frequency, electrode properties, and current density. It represents the ionic DC properties of the tissue. Significant resistivity changes were detected with a characteristic decrease at approximately the 2nd day after implantation. The maximum resistivity was reached before electrical stimulation was initiated on the 8th day, which resulted in a decrease in resistivity. Compared with the unipolar electrodes, the bipolar electrodes exhibited an increased sensitivity for the tissue resistivity.


2011 ◽  
Vol 17 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Gabriella Deli ◽  
Istvan Balas ◽  
Ferenc Nagy ◽  
Eva Balazs ◽  
Jozsef Janszky ◽  
...  

2012 ◽  
Vol 72 (2) ◽  
pp. ons184-ons193 ◽  
Author(s):  
Till M. Schneider ◽  
Christopher Beynon ◽  
Alexander Sartorius ◽  
Andreas W. Unterberg ◽  
Karl L. Kiening

Abstract BACKGROUND: Deep brain stimulation (DBS) has recently been discussed as a promising treatment option for severe cases of major depression. Experimental data have suggested that the lateral habenular complex (LHb-c) is a central region of depression-related neuronal circuits. Because of its location close to the midline, stereotactic targeting of the LHb-c presents surgeons with distinct challenges. OBJECTIVE: To define the obstacles of DBS surgery for stimulation of the LHb-c and thus to establish safe trajectories. METHODS: Stereotactic magnetic resonance imaging data sets of 54 hemispheres originating from 27 DBS patients were taken for analysis on a stereotactic planning workstation. After alignment of images according to the anterior commissure-posterior commissure definition, analyses focused on vessels and enlarged ventricles interfering with trajectories. RESULTS: As major trajectory obstacles, enlarged ventricles and an interfering superior thalamic vein were found. A standard frontal trajectory (angle > 40° relative to the anterior commissure-posterior commissure in sagittal images) for bilateral stimulation was safely applicable in 48% of patients, whereas a steeper frontal trajectory (angle <40 relative to the anterior commissure-posterior commissure in sagittal images) for bilateral stimulation was possible in 96%. Taken together, safe bilateral targeting of the LHb-c was possible in 98% of all patients. CONCLUSION: Targeting LHb-c is a feasible and safe technique in the majority of patients undergoing surgery for DBS. However, meticulous individual planning to avoid interference with ventricles and thalamus-related veins is mandatory because an alternative steep frontal entry point has to be considered in about half of the patients.


2015 ◽  
Vol 233 ◽  
pp. 9-14
Author(s):  
Wei-Yi Chuang ◽  
Paul C.-P. Chao ◽  
Shin-Yuan Chen ◽  
Sheng-Tzung Tsai ◽  
Kuu-Young Young ◽  
...  

2019 ◽  
Author(s):  
Egill Axfjord Fridgeirsson ◽  
Martijn Figee ◽  
Judy Luigjes ◽  
Pepijn van den Munckhof ◽  
P.Richard Schuurman ◽  
...  

AbstractDeep brain stimulation (DBS) is effective for patients with treatment‐refractory obsessive‐compulsive disorder. DBS of the ventral anterior limb of the internal capsule (vALIC) rapidly improves mood and anxiety with optimal stimulation parameters. To understand these rapid effects of vALIC‐DBS, we studied functional interactions within the affective amygdala circuit. We compared resting state functional magnetic resonance imaging data during chronic stimulation versus one week of stimulation discontinuation in patients, and obtained two resting state scans from matched healthy volunteers to account for test‐retest effects. Imaging data were analyzed using functional connectivity analysis and dynamic causal modelling. Improvement in mood and anxiety following DBS was associated with reduced amygdala‐insula functional connectivity. Directional connectivity analysis revealed that DBS increased the impact of the ventromedial prefrontal cortex on the amygdala, and decreased the impact of the amygdala on the insula. These results highlight the importance of the amygdala circuit in the pathophysiology of OCD, and suggest a neural systems model through which negative mood and anxiety are modulated by vALIC‐DBS for OCD and possibly other psychiatric disorders.One Sentence SummaryDeep brain stimulation improves mood and anxiety in obsessive‐compulsive disorder by altering connectivity between the amygdala, insula and prefrontal cortex.


2021 ◽  
pp. 1-13
Author(s):  
Gregor R. Wenzel ◽  
Jan Roediger ◽  
Christof Brücke ◽  
Ana Luísa de A. Marcelino ◽  
Eileen Gülke ◽  
...  

Background: Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. Objective: We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. Methods: For 23 Parkinson’s disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. Results: Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. Conclusion: Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results.


Sign in / Sign up

Export Citation Format

Share Document