scholarly journals Novel Biobased Polyol Using Corn Oil for Highly Flame-Retardant Polyurethane Foams

2019 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Sneha Ramanujam ◽  
Camila Zequine ◽  
Sanket Bhoyate ◽  
Brooks Neria ◽  
Pawan Kahol ◽  
...  

A novel bio-based polyol was synthesized using corn oil and 2-mercaptoethanol via thiol-ene reaction as an alternative to petroleum-based polyol for the synthesis of polyurethane foams. The polyol was analyzed using wet chemical techniques to obtain hydroxyl number and viscosity. Infrared spectroscopy and gel permeation chromatography were used to confirm the structural properties of the foams. Flame-retardant polyurethane foams were prepared by the addition of different concentrations of dimethyl methyl phosphonate (DMMP) in final foam composition. The effect of DMMP on the thermo-mechanical properties of the polyurethane foams was analyzed. The TGA analysis showed improved stability of the final char with addition of DMMP in the foams. All the foams maintained a well-defined cellular structure and over 95% of closed cell content. The horizontal burning test showed reduced burning time and weight loss from 115 s and 38 wt.% for the neat foams, to 3.5 s and 5.5 wt.% for DMMP-containing foams (1.94 wt.% P). The combustion test using cone calorimeter showed a considerable reduction in heat release rate and total heat release. Thus, our study shows that corn-oil based polyol can be used to produce renewable polyol for industrially producible rigid polyurethane foams. The addition of a small amount of DMMP could result in a significant reduction in the flame-retardant properties of the polyurethane foams.

2020 ◽  
Vol 6 (2) ◽  
pp. 27
Author(s):  
Felipe M. de Souza ◽  
Jonghyun Choi ◽  
Sanket Bhoyate ◽  
Pawan K. Kahol ◽  
Ram K. Gupta

The rigid polyurethane foam (PU) is a versatile material, used especially for construction and household applications. The current situation demands a facile, cost-efficient, and greener approach for developing the polyurethanes from bio-derived materials. In this study, we present a novel bio-polyol synthesized using carvone, an extract from caraway, spearmint, or dill seeds via facile thiol-ene reaction. Our one-step reaction uses a UV irradiation to allow the room temperature conversion of the carvone to a high purity bio-polyol, as confirmed from the standard analytical characterizations. The hydroxyl number of 365 mg KOH/g close to its theoretical limit confirms the high conversion yield of the polyol for rigid PU synthesis. To overcome the flammability issues in PU, expandable graphite (EG) powder was used as an additive flame-retardant during the synthesis step. The resulting foams with EG maintained the uniform closed cell structure (>95%) with a high compression strength of 175 kPa. The addition of EG in PU results in the formation of a protective char layer during the flammability test and reduces the weight loss from 40.70% to 3.55% and burning time from 87 to 11 s. Our results confirm that the carvone-based polyol can be a novel alternative to the petroleum polyols for an industrial-scale application.


2020 ◽  
Vol 56 (2) ◽  
pp. 1172-1188
Author(s):  
Anna M. Szczotok ◽  
Dan Madsen ◽  
Angel Serrano ◽  
Manuel Carmona ◽  
Patrick Van Hees ◽  
...  

Abstract Thermoregulating microcapsules (MC) with flame-retardant properties were used to produce polyurethane (PU) foams. Thermogravimetric analyses of the microcapsules performed under atmospheric air and nitrogen confirmed that the hexa(methacryloylethylenedioxy) cyclotriphosphazene (PNC-HEMA) monomer raised the amount of residue after exposure to high temperature, proving the formation of a thermally stable char layer. Additionally, the flame-retardant properties of the microcapsules were analyzed by micro-combustion calorimetry (MCC), and the PU foams were tested by both MCC and cone calorimetry. The total heat release and maximum heat release rate were lower for microcapsules containing the flame-retardant PNC-HEMA. The composition of the microcapsules has been proved by MCC and TGA, where the release of the encapsulated phase change material (PCM) occurred at the expected temperature. However, in PU foams, the release of PCM is shifted to higher temperatures. Accordingly, these materials can be considered as an important alternative to commonly used microcapsules containing phase PCMs, where a lower flammability is required for their future application. Graphic abstract


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunzhuang Yang ◽  
Shuiyu Shao

Ammonium polyphosphate (APP) with different polymerization degrees were modified by a novel phosphorus-containing organosilicon compound (PCOC), and the products obtained were coded as MAPP-30 and MAPP-1000. Then they were applied to prepare flame-retardant rigid polyurethane foam (RPUF) separately. The impact of modified APP (MAPP) on the flame-retardant properties of RPUF was investigated by the limited oxygen index (LOI) test, horizontal burning test, and cone calorimeter test. The morphologies of the char residues were observed by SEM. Furthermore, the mechanical properties of RPUF composites were measured by the compressive strength test. The results showed that whether the degree of polymerization of MAPP is 30 or 1000, they both had greater charring ability and better flame-retardant properties than unmodified APP. The residual char yield of RPUF/MAPP-30 (37.3%) and RPUF/MAPP-1000 (36.5%) were both significantly higher than RPUF/APP-30 (22.8%) and RPUF/APP-1000 (24.9%). The peak heat release rate value of RPUF/MAPP-30 was 29.9% lower than that of RPUF/APP-30, and the drop of RPUF/MAPP-1000 was 50.9% compared to RPUF/APP-1000. Moreover, the total heat release of RPUF/MAPP-1000 (9.7 MJ/m2) was much lower than that of RPUF/MAPP-30 (11.3 MJ/m2). In summary, MAPP-1000 has the best flame-retardant properties among all RPUF composites. In addition, the results also showed that flame-retardant performance and the mechanical properties dramatically decreased with the increase in the addition of MAPP-1000, and the RPUF composite had the best comprehensive performance with 20% content of MAPP-1000.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1286
Author(s):  
Kyung-Who Choi ◽  
Jun-Woo Kim ◽  
Tae-Soon Kwon ◽  
Seok-Won Kang ◽  
Jung-Il Song ◽  
...  

The use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked. Likewise, a cone calorimetry test confirmed that the heat release rate and total heat release of the coated foam decreased by about 1/2, and a flame test showed improved fire retardancy based on the analysis of combustion speed, flame size, and residues of the LbL-coated foam. More importantly, an additional cone calorimeter test was performed after conducting more than 1000 compressions to assess the durability of the flame-retardant coating layer when applied in real life, confirming the durability of the LbL coating by the lasting flame retardancy.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 132 ◽  
Author(s):  
Kunpeng Song ◽  
Yinjie Wang ◽  
Fang Ruan ◽  
Jiping Liu ◽  
Nianhua Li ◽  
...  

A new strategy for the preparation of an integrated three-source intumescent flame retardant (IFR) has been developed to improve the flame-retardant and smoke suppression performance of epoxy resin (EP) with a synergistic flame retardant effect. Herein, the synthesis of a macromolecular spirocyclic phosphorus/nitrogen-containing IFR poly sulfonamide spirocyclic pentaerythritol bisphosphonate (SAPC) is reported via a two-step method that uses pentaerythritol, phosphorus oxychloride and sulfonamide (SAA) as raw materials. Subsequently, the SAPC was incorporated into EP to prepare the composite to investigate its thermal stability, flame retardancy, and smoke suppression performance. Herein, a differential scanning calorimetry (DSC) analysis showed that the addition of SAPC increased the glass transition temperature (Tg) of the composite. Cone test results indicated that the incorporation of 8 wt % SAPC significantly improved the flame-retardant performance for the composite, with a 43.45% decrease in peak of heat release rate, a 28.55% reduction in total heat release, and a 30.04% decrease in total smoke release. Additionally, the composite received the V-0 rating in a UL-94 vertical burning test, accompanied by the “blowout” phenomenon. After the addition of SAPC, the amount of flammable gas products from the EP composite decomposition was obviously suppressed, and the amount of non-flammable as was increased. All of this suggests a good dilution role of SAPC. There are enough reasons to believe that the enhanced flame-retardant and toxicity suppression performance for the EP composite can be attributed to the good coordination of carbonization agent, acid source, and blowing agent in the SAPC structure.


2013 ◽  
Vol 357-360 ◽  
pp. 1441-1445
Author(s):  
Xiao Lin Li ◽  
Zheng Fang ◽  
Dong Ji ◽  
Zhi Dong Wan ◽  
Kai Guo

The synthesis of a novel class of diamine-based polyols derivatives and the potentials and the limitations of these polyols were reported. This class of diamine-based polyols with high hydroxyl values and no acid values can be used in rigid polyurethane foams. The prepared rigid foams show the properties of low density, high closed cell content, low thermal conductivity, and high compressive strength.


RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32156-32161
Author(s):  
Guangyu Zhang ◽  
Xiaoqi Lin ◽  
Qinqin Zhang ◽  
Kaisen Jiang ◽  
Weisheng Chen ◽  
...  

Bio-based rigid polyurethane foams with the addition of flame retardant exhibit preferable flame-retardant properties.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1664 ◽  
Author(s):  
Marco Barbalini ◽  
Luca Bertolla ◽  
Jaromír Toušek ◽  
Giulio Malucelli

New hybrid sol–gel coatings based on tetraethoxysilane (TEOS) and phytic acid (PA) were designed and applied to cotton; the flame-retardant properties of the treated fabrics were thoroughly investigated by means of flame-spread and forced-combustion tests. The first goal was to identify the TEOS:PA weight ratio that allowed the achievement of the best flame-retardant properties, with the lowest final dry add-on on the fabrics. Therefore, different TEOS:PA sols were prepared and applied to cotton, and the resulting coated fabrics were thoroughly investigated. In particular, solid-state NMR spectroscopy was exploited for assessing the condensation degree during the sol–gel process, even for evaluating the occurrence of possible reactions between phytic acid and the cellulosic substrate or the alkoxy precursor. It was found that a total dry add-on of 16 wt % together with 70:30 TEOS:PA weight ratio provided cotton with self-extinction, as clearly indicated by flame-spread tests. This formulation was further investigated in forced-combustion tests: a significant reduction of heat release rate (HRR), of the peak of HRR, and of total heat release (THR) was found, together with a remarkable increase of the residues after the test. Unfortunately, the treated fabrics were not resistant to washing cycles, as they significantly lost their flame-retardant properties, consequently to the partial removal of the deposited hybrid coatings.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 738 ◽  
Author(s):  
Aiga Ivdre ◽  
Arnis Abolins ◽  
Irina Sevastyanova ◽  
Mikelis Kirpluks ◽  
Ugis Cabulis ◽  
...  

Developing polyols derived from natural sources and recycling materials attracts great interest for use in replacing petroleum-based polyols in polyurethane production. In this study, rigid polyurethane (PUR) foams with various isocyanate indices were obtained from polyols based on rapeseed oil and polyethylene terephthalate (RO/PET). The various properties of the prepared PUR foams were investigated, and the effect of the isocyanate index was evaluated. The closed-cell content and water absorption were not impacted by the change of the isocyanate index. The most significant effect of increasing the isocyanate index was on the dimensional stability of the resulting foams. This is due to the increased crosslink density, as evidenced by the increased formation of isocyanurate and increase of the glass transition temperature. Additionally, the influence on compression strength, modulus, and long-term thermal conductivity were evaluated and compared with reference PUR foams from commercially available polyols. Rigid PUR foams from RO/PET polyol were found to be competitive with reference materials and could be used as thermal insulation material.


Sign in / Sign up

Export Citation Format

Share Document