scholarly journals The Role of Aberrant DNA Methylation in Misregulation of Gene Expression in Gonadotroph Nonfunctioning Pituitary Tumors

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1650 ◽  
Author(s):  
Paulina Kober ◽  
Joanna Boresowicz ◽  
Natalia Rusetska ◽  
Maria Maksymowicz ◽  
Agnieszka Paziewska ◽  
...  

Gonadotroph nonfunctioning pituitary adenomas (NFPAs) are common intracranial tumors, but the role of aberrant epigenetic regulation in their development remains poorly understood. In this study, we investigated the effect of impaired CpG methylation in NFPAs. We determined DNA methylation and transcriptomic profiles in 32 NFPAs and normal pituitary sections using methylation arrays and sequencing, respectively. Ten percent of differentially methylated CpGs were correlated with gene expression, and the affected genes are involved in a variety of tumorigenesis-related pathways. Different proportions of gene body and promoter region localization were observed in CpGs with negative and positive correlations between methylation and gene expression, and different proportions of CpGs were located in ‘open sea’ and ‘shelf/shore’ regions. The expression of ~8% of genes differentially expressed in NFPAs was related to aberrant methylation. Methylation levels of seven CpGs located in the regulatory regions of FAM163A, HIF3A and PRSS8 were determined by pyrosequencing, and gene expression was measured by qRT-PCR and immunohistochemistry in 83 independent NFPAs. The results clearly confirmed the negative correlation between methylation and gene expression for these genes. By identifying which aberrantly methylated CpGs affect gene expression in gonadotrophinomas, our data confirm the role of aberrant methylation in pathogenesis of gonadotroph NFPAs.

2020 ◽  
Author(s):  
Xin Yang ◽  
Shumei Wang ◽  
Alimu Reheman

Abstract Background: Runt-related transcription factor 3 (RUNX3) is a developmental regulator, and methylation of the RUNX3 is significantly associated with the occurrence and development of carcinogenesis. Previous studies have identified an association of increased methylation level of RUNX3 in prostate cancer (PCa); however, the role and molecular mechanism underlying aberrant methylation of the RUNX3 gene in prostate tumorigenesis remain elusive. In this study, we will investigate the role of RUNX3 promoter methylation and its gene expression in PCa cells. Methods: The methylation of the RUNX3 in the promoter region in PCa cells was detected by bisulfite-sequencing PCR (BSP). Following treatment of the PCa cells with DNA methylation transferase inhibitor 5-AZA-2'-deoxycytidine (AZA), the effect on methylation level and expression of RUNX3 were analyzed by qRT-PCR, Western blot, and BSP assays. Furthermore, we investigated the effect of the demethylated RUNX3 on proliferation, cell cycle and apoptosis of PCa cells using CCK-8 and flow cytometry assays. Using the DNA methylation transferase (DNMT3b) knockout or overexpression models, the relationship between DNMT3b and RUNX3 methylation was further assessed by qRT-PCR, Western blot and methylation-specific PCR (MSP). Results: The results indicated that the methylation level of RUNX3 in PCa cell lines was significantly higher than that of normal prostate epithelial (RWPE-1) cells. Furthermore, treatment with AZA not only promoted the demethylation of RUNX3 but also restored the mRNA and protein expression of RUNX3, and the reactivation of expression of the later exhibited its anti-tumor effects through regulation of the cycle progression in PCa cells. Moreover, DNMT3b could regulate the expression level of RUNX3 by altering the DNA methylation of the RUNX3 in PCa cells. Conclusion: RUNX3 is hypermethylated in a panel of PCa cell lines; Inhibits DNA methylation of RUNX3 could restored its gene expression, which in turn induced its anti-cancer effects. Thus, RUNX3 may serve as a novel putative molecular target gene for PCa therapy.


2021 ◽  
Author(s):  
Roza Berhanu Lemma ◽  
Thomas Fleischer ◽  
Emily Martinsen ◽  
Vessela N Kristensen ◽  
Ragnhild Eskeland ◽  
...  

Methylation of cytosines on DNA is a prominent modification associated with gene expression regulation. Aberrant DNA methylation patterns have recurrently been linked to dysregulation of the regulatory program in cancer cells. To shed light on the underlying molecular mechanism driving this process, we hypothesized that aberrant methylation patterns could be controlled by the binding of specific transcription factors (TFs) across cancer types. By combining DNA methylation arrays and gene expression data with TF binding sites (TFBSs), we explored the interplay between TF binding and DNA methylation in 19 cancer cohorts. We performed emQTL (expression-methylation quantitative trait loci) analyses in each cohort and identified 13 TFs whose expression levels are correlated with local DNA methylation patterns around their binding site in at least 2 cancer types. The 13 TFs are mainly associated with local demethylation and are enriched for pioneer function, suggesting a specific role for these TFs in modulating chromatin structure and transcription in cancer patients. Furthermore, we confirmed that de novo methylation is precluded across cancers at CpGs lying in genomic regions enriched for TF-binding signatures associated with SP1, CTCF, NRF1, GABPA, KLF9, and/or YY1. The modulation of DNA methylation associated with TF binding was observed at cis-regulatory regions controlling immune- and cancer-associated pathways, corroborating that the emQTL signals were derived from both cancer and tumour-infiltrating cells. As a case example, we experimentally confirmed that FOXA1 knock-down is associated with higher methylation in regions bound by FOXA1 in breast cancer MCF-7 cells. Finally, we reported physical interactions between FOXA1 with TET1 and TET2 at physiological levels in MCF-7 cells, adding further support for FOXA1 attracting TET1 and TET2 to induce local demethylation in cancer.


2020 ◽  
Author(s):  
Xin Yang ◽  
Shumei Wang ◽  
Alimu Reheman

Abstract Background: Runt-related transcription factor 3 (RUNX3) is a developmental regulator, and methylation of the RUNX3 is significantly associated with the occurrence and development of carcinogenesis. Previous studies have identified an association of increased methylation level of RUNX3 in prostate cancer (PCa); however, the role and molecular mechanism underlying aberrant methylation of the RUNX3 gene in prostate tumorigenesis remain elusive. In this study, we will investigate the role of RUNX3 promoter methylation and its gene expression in PCa cells. Methods: The methylation of the RUNX3 in the promoter region in PCa cells was detected by bisulfite-sequencing PCR (BSP). Following treatment of the PCa cells with DNA methylation transferase inhibitor 5-AZA-2'-deoxycytidine (AZA), the effect on methylation level and expression of RUNX3 were analyzed by qRT-PCR, Western blot, and BSP assays. Furthermore, we investigated the effect of the demethylated RUNX3 on proliferation, cell cycle and apoptosis of PCa cells using CCK-8 and flow cytometry assays. Using the DNA methylation transferase (DNMT3b) knockout or overexpression models, the relationship between DNMT3b and RUNX3 methylation was further assessed by qRT-PCR, Western blot and methylation-specific PCR (MSP). Results: The results indicated that the methylation level of RUNX3 in PCa cell lines was significantly higher than that of normal prostate epithelial (RWPE-1) cells. Furthermore, treatment with AZA not only promoted the demethylation of RUNX3 but also restored the mRNA and protein expression of RUNX3, and the reactivation of expression of the later exhibited its anti-tumor effects through regulation of the cycle progression in PCa cells. Moreover, DNMT3b could regulate the expression level of RUNX3 by altering the DNA methylation of the RUNX3 in PCa cells. Conclusion: RUNX3 is hypermethylated in a panel of PCa cell lines; Inhibits DNA methylation of RUNX3 could restored its gene expression, which in turn induced its anti-cancer effects. Thus, RUNX3 may serve as a novel putative molecular target gene for PCa therapy.


2021 ◽  
Vol 5 (10) ◽  
pp. 1382-1393
Author(s):  
Xinyu Jiang ◽  
Qingxin Song ◽  
Wenxue Ye ◽  
Z. Jeffrey Chen

AbstractDuring evolution successful allopolyploids must overcome ‘genome shock’ between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsisthaliana (TT) and Arabidopsisarenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.


2021 ◽  
Vol 22 (12) ◽  
pp. 6197
Author(s):  
Paola Brivio ◽  
Giulia Sbrini ◽  
Letizia Tarantini ◽  
Chiara Parravicini ◽  
Piotr Gruca ◽  
...  

Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45β, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45β and Gilz gene expression and lurasidone normalized the Gadd45β modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45β gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45β expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.


2005 ◽  
Vol 92 (6) ◽  
pp. 1165-1172 ◽  
Author(s):  
M Murai ◽  
M Toyota ◽  
A Satoh ◽  
H Suzuki ◽  
K Akino ◽  
...  

Epigenomics ◽  
2021 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Manuel Castro de Moura ◽  
Gerard Muntané ◽  
Lourdes Martorell ◽  
Elena Bosch ◽  
...  

Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.


1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M C Carbajo-García ◽  
A Corachán ◽  
M Segura ◽  
J Monleón ◽  
J Escrig ◽  
...  

Abstract Study question Is DNA methylation reversion through DNA methyltransferases (DNMT) inhibitors, such as 5-aza–2’-deoxycitidine, a potential therapeutic option for treatment of patients with uterine leiomyomas (UL)? Summary answer 5-aza–2’-deoxycitidine reduces proliferation and extracellular matrix (ECM) formation by inhibition of Wnt/ β-catenin pathway on UL cells, suggesting DNMT inhibitors as an option to treat UL. What is known already: UL is a multifactorial disease with an unclear pathogenesis and inaccurate treatment. Aberrant DNA methylation have been found in UL compared to myometrium (MM) tissue, showing hypermethylation of tumor suppressor genes, which contributes to the development of this tumor. The use of DNMT inhibitors, such as 5-aza–2’-deoxycytidine (5-aza-CdR), has been suggested to treat tumors in which altered methylation pattern is related to tumor progression, as occurs in UL. Based on this, we aimed to evaluate whether DNA methylation reversion through 5-aza-CdR reduces cell proliferation and ECM formation in UL cells, being a potential option for UL medical treatment. Study design, size, duration Prospective study comparing UL versus MM tissue and human uterine leiomyoma primary (HULP) cells treated with/without 5-aza-CdR at 0 µM (control), 2 µM, 5 µM and 10 µM for 72 hours. UL and MM tissue were collected from women without any hormonal treatment for the last 3 months (n = 16) undergoing myomectomy or hysterectomy due to symptomatic leiomyoma pathology. Participants were recruited between January 2019 and February 2020 at Hospital Universitario y Politecnico La Fe (Spain). Participants/materials, setting, methods Samples were collected from Caucasian premenopausal women aged 31–48 years, with a body mass index of < 30 and without hormonal treatment. DNMT1 gene expression was analysed in UL vs MM tissue by qRT-PCR and activity of DNMT was measured in UL and MM tissue and cells by ELISA. 5-aza-CdR effect on proliferation was assessed by CellTiter test and Western blot (WB), apoptosis and ECM analyzed by WB and Wnt/ β-catenin pathway by qRT-PCR and WB. Main results and the role of chance: DNMT1 gene expression was increased in UL compared to MM tissue (fold change [FC]=2.49, p-value [p]=0.0295). Similarly, DNMT activity was increased in both UL compared to MM tissue and HULP cells versus MM cells (6.50 vs 3.76 OD/h/mg, p = 0.026; 211.30 vs 63.67 OD/h/mg, p = 0.284, respectively). After 5-aza-CdR treatment, cell viability of HULP cells was reduced in a dose dependent manner, being statistically significant at 10 µM (85.25%, p = 0.0001). Accordantly, PCNA protein expression was significantly decreased at 10 µM in HULP cells (FC = 0.695, p = 0.034), demonstrating cell proliferation inhibition. Additionally, 5-aza-CdR inhibited ECM protein expression in HULP cells in a dose-dependent manner being statistically significant at 10 µM for COLLAGEN I (FC = 0.654, p = 0.023) and PAI–1 (FC = 0.654, p = 0.023), and at 2 µM and 10 µM for FIBRONECTIN (FC = 0.812, p = 0.020; FC = 0.733, p = 0.035; respectively). Final targets of Wnt/ β-catenin pathway were decreased after 5-aza-CdR treatment, protein expression of WISP1 was significantly inhibited at 10 µM (FC = 0.699, p = 0.026), while expression levels of Wnt/ β-catenin target genes C-MYC (FC = 0.745, p = 0.028 at 2 µM; FC = 0.728, p = 0.019 at 10 µM) and MMP7 (FC = 0.520, p = 0.003 at 5 µM, FC = 0.577, p = 0.007 at 10 µM) were also significantly downregulated in HULP-treated cells vs untreated cells. Limitations, reasons for caution: This study has strict inclusion criteria to diminish epigenetic variability, thereby we should be cautious extrapolating our results to general population. Besides, this is a proof of concept with the inherent cell culture limitations. Further studies are necessary to determine 5-aza-CdR dose and adverse effects on UL in vivo. Wider implications of the findings: 5-aza-CdR treatment reduces cell proliferation and ECM formation through Wnt/ β-catenin pathway inhibition, suggesting that inhibition of DNA methylation could be a promising new therapeutic approach to treat UL. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document