scholarly journals Innate and Adaptive Immunity Linked to Recognition of Antigens Shared by Neural Crest-Derived Tumors

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 840
Author(s):  
Giuseppe Donato ◽  
Ivan Presta ◽  
Biagio Arcidiacono ◽  
Marco F.M. Vismara ◽  
Annalidia Donato ◽  
...  

In the adult, many embryologic processes can be co-opted by during cancer progression. The mechanisms of divisions, migration, and the ability to escape immunity recognition linked to specific embryo antigens are also expressed by malignant cells. In particular, cells derived from neural crests (NC) contribute to the development of multiple cell types including melanocytes, craniofacial cartilage, glia, neurons, peripheral and enteric nervous systems, and the adrenal medulla. This plastic performance is due to an accurate program of gene expression orchestrated with cellular/extracellular signals finalized to regulate long-distance migration, proliferation, differentiation, apoptosis, and survival. During neurulation, prior to initiating their migration, NC cells must undergo an epithelial–mesenchymal transition (EMT) in which they alter their actin cytoskeleton, lose their cell–cell junctions, apicobasal polarity, and acquire a motile phenotype. Similarly, during the development of the tumors derived from neural crests, comprising a heterogeneous group of neoplasms (Neural crest-derived tumors (NCDTs)), a group of genes responsible for the EMT pathway is activated. Here, retracing the molecular pathways performed by pluripotent cells at the boundary between neural and non-neural ectoderm in relation to the natural history of NCDT, points of contact or interposition are highlighted to better explain the intricate interplay between cancer cells and the innate and adaptive immune response.

2021 ◽  
Vol 38 (2) ◽  
pp. 139-161
Author(s):  
Asha Kumari ◽  
Zainab Shonibare ◽  
Mehri Monavarian ◽  
Rebecca C. Arend ◽  
Nam Y. Lee ◽  
...  

AbstractEpithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell–cell junctions, cell–matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Tetsu Hayashida ◽  
Hiromitsu Jinno ◽  
Yuko Kitagawa ◽  
Masaki Kitajima

Epithelial-mesenchymal transition (EMT) is a multistep process in which cells acquire molecular alterations such as loss of cell-cell junctions and restructuring of the cytoskeleton. There is an increasing understanding that this process may promote breast cancer progression through promotion of invasive and metastatic tumor growth. Recent observations imply that there may be a cross-talk between EMT and cancer stem cell properties, leading to enhanced tumorigenicity and the capacity to generate heterogeneous tumor cell populations. Here, we review the experimental and clinical evidence for the involvement of EMT in cancer stem cell theory, focusing on the common characteristics of this phenomenon.


2020 ◽  
Author(s):  
Nadège Gouignard ◽  
Anne Bibonne ◽  
Jean-Pierre Saint-Jeannet ◽  
Eric Theveneau

AbstractEpithelial-Mesenchymal Transition (EMT) is an early event in cell dissemination from epithelial tissues. EMT endows cells with migratory, and sometimes invasive, capabilities and is thus a key process in embryo morphogenesis and cancer progression. So far, Matrix Metalloproteinases (MMPs) have not been considered as key players in EMT but rather studied for their role in matrix remodelling in later events such as cell migration per se. Here we used Xenopus neural crest cells to assess the role of MMP28 in EMT and migration in vivo. We provide strong evidence indicating that MMP28 produced by neighbouring placode cells is imported in the nucleus of neural crest cells for EMT and migration to occur.


Author(s):  
Nenad Markovic ◽  
Ana Lukovic ◽  
Nebojsa Arsenijevic ◽  
Srdjan Ninkovic ◽  
Biljana Ljujic

Abstract Breast cancer is not only a mass of genetically abnormal tissue in the breast. This is a well-organized system of a complex heterogeneous tissue. Cancer cells produce regulatory signals that stimulate stromal cells to proliferate and migrate; then, stromal elements respond to these signals by releasing components necessary for tumor development that provide structural support, vasculature, and extracellular matrices. Developing tumors can mobilize a variety of cell types from both local and distant niches via secret chemical factors derived from cancer cells themselves or neighboring cells disrupted by growing neoplasm, such as fibroblasts, immune inflammatory cells, and endothelial cells. CSCs are a group of very few cells that are tumorigenic (able to form tumors) and are defined as those cells within a tumor that can self-renew and lead to tumorigenesis. BCSCs represent a small population of cells that have stem cell characteristics and are related to breast cancer. There are different theories about the origin of BCSCs. BCSCs are responsible for breast carcinoma metastasis. Usually, there is a metastatic spread to the bones, and rarely to the lungs and liver. A phenomenon that allows BCSCs to make the transition from epithelial to mesenchymal expression and thus avoid the effect of cytotoxic agents is the epithelial-mesenchymal transition (EMT). During this process, cells change their molecular characteristics in terms of loss of epithelial characteristics taking the mesenchymal phenotype. This process plays a key role in the progression, invasion, and metastasis of breast tumors.


Author(s):  
Soorya P. Illam ◽  
Arunaksharan Narayanankutty ◽  
Shaji E. Mathew ◽  
Remya Valsalakumari ◽  
Rosemol M. Jacob ◽  
...  

Author(s):  
Mirazkar D. Pandareesh ◽  
Vivek Hamse Kameshwar ◽  
Kullaiah K. Byrappa

: Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer pose a challenge for the researchers. Besides genetic mutations, many epigenetic alterations including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodelling, and chromosomal looping, have been significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via. modifications in the tumor microenvironment by initiating epithelial-mesenchymal transition and remodelling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment.


Oncogenesis ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Kaname Sakamoto ◽  
Kaori Endo ◽  
Kei Sakamoto ◽  
Kou Kayamori ◽  
Shogo Ehata ◽  
...  

AbstractETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yoshinobu Kariya ◽  
Midori Oyama ◽  
Takato Suzuki ◽  
Yukiko Kariya

AbstractEpithelial–mesenchymal transition (EMT) plays a pivotal role for tumor progression. Recent studies have revealed the existence of distinct intermediate states in EMT (partial EMT); however, the mechanisms underlying partial EMT are not fully understood. Here, we demonstrate that αvβ3 integrin induces partial EMT, which is characterized by acquiring mesenchymal phenotypes while retaining epithelial markers. We found αvβ3 integrin to be associated with poor survival in patients with lung adenocarcinoma. Moreover, αvβ3 integrin-induced partial EMT promoted migration, invasion, tumorigenesis, stemness, and metastasis of lung cancer cells in a TGF-β-independent fashion. Additionally, TGF-β1 promoted EMT progression synergistically with αvβ3 integrin, while a TGF-β signaling inhibitor showed no effect on αvβ3 integrin-induced partial EMT. Meanwhile, the microRNA-200 family abolished the αvβ3 integrin-induced partial EMT by suppressing αvβ3 integrin cell surface expression. These findings indicate that αvβ3 integrin is a key inducer of partial EMT, and highlight a new mechanism for cancer progression.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


Sign in / Sign up

Export Citation Format

Share Document