scholarly journals Epigenetic Aberrations in Multiple Myeloma

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2996
Author(s):  
Cinzia Caprio ◽  
Antonio Sacco ◽  
Viviana Giustini ◽  
Aldo M. Roccaro

Multiple myeloma (MM) is a plasma cell dyscrasia characterized by proliferation of clonal plasma cells within the bone marrow. Several advances in defining key processes responsible for MM pathogenesis and disease progression have been made; and dysregulation of epigenetics, including DNA methylation and histone modification, has emerged as a crucial regulator of MM pathogenesis. In the present review article, we will focus on the role of epigenetic modifications within the specific context of MM.

2021 ◽  
pp. 1-2
Author(s):  
A. Bazine ◽  
M. Torreis ◽  
M. Elmarjany ◽  
M. Benlemlih ◽  
A. Maghous ◽  
...  

Multiple myeloma (MM) is typically characterized by neoplastic proliferation of plasma cells in the bone marrow and can result in extensive skeletal destruction. Involvement of skull base is extremely rare, especially sphenoid bone. We report in this work the case of a 62-year-old woman, who presented with a sphenoid relapse of multiple myeloma treated with radiation therapy, with signicant clinical improvement and almost complete disappearance of the sphenoid metastasis. We shed light, through this case, on the rarity of sphenoid metastases in multiple myeloma and on the role of radiotherapy in the management of this type of location.


2020 ◽  
Vol 21 (20) ◽  
pp. 7539
Author(s):  
Amro M. Soliman ◽  
Teoh Seong Lin ◽  
Pasuk Mahakkanukrauh ◽  
Srijit Das

Multiple myeloma (MM) is a cancerous bone disease characterized by malignant transformation of plasma cells in the bone marrow. MM is considered to be the second most common blood malignancy, with 20,000 new cases reported every year in the USA. Extensive research is currently enduring to validate diagnostic and therapeutic means to manage MM. microRNAs (miRNAs) were shown to be dysregulated in MM cases and to have a potential role in either progression or suppression of MM. Therefore, researchers investigated miRNAs levels in MM plasma cells and created tools to test their impact on tumor growth. In the present review, we discuss the most recently discovered miRNAs and their regulation in MM. Furthermore, we emphasized utilizing miRNAs as potential targets in the diagnosis, prognosis and treatment of MM, which can be useful for future clinical management.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3622-3622
Author(s):  
Yang Liu ◽  
Shenghua Duan ◽  
Xavier Leleu ◽  
Yong Zhang ◽  
Abdel Kareem A. Azab ◽  
...  

Abstract Abstract 3622 Introduction: Epigenetic factors such as DNA methylation have been shown to play a crucial role in the pathogenesis and progression of multiple myeloma (MM), yet studies of DNA methylation in MM are still limited. Therefore, in order to better understand the role of DNA methylation and identify specific genes that may be affected by differential methylation in MM patients, we conducted genome-wide DNA methylation profiling in cd138+ plasma cells purified from bone marrow of the patients with MM and normal donors. Methods: Genomic DNA of CD138+ Plasma cell selected from both MM patients and normal primary bone marrow was extracted using QIAGEN genome isolation kit. Following extraction, methylated DNA was isolated by Chip and hybridized to Affymetrix Human 2.0 tiling arrays. Chip assay and array hybridization was performed by Genepathway Inc. CEL files were processed and normalized using the MAT program, and methylation peaks were called from the resulting MAT scores using a custom segmentation method. Peak annotation and characterization of different genomic regions was done with custom tools and using genome annotation files from the UCSC genome database. All peaks were visualized by IGB online software. Medip-PCR was done in human MM cell lines to validate the methylation status. Methylated gene expression was determined by both Semi-quantitative PCR and real-time PCR. 5′aza was used for demethylation in human MM cell lines. Methylated gene expression with or without 5′aza treatment was determined by both Semi-quantitative PCR and real-time PCR. Results: Genomic DNA from CD138+ plasma cells from bone marrow of MM patients showed a significant increase in methylation levels compared to normal controls. We demonstrated that the hypermethylated sites were distributed across the genome in the following proportions: 3.2% in the promoter region; 45.6% in the intragenic region; 5.4 % in the 3′ end region; and 46.8 % in the intergenic region. Furthermore, around 9 % promoter CpG islands (CGIs); 11% intragenic CGIs; 15 % CGIs in 3′end region; and 14.3 % intergenic CGIs of patients genomic DNA were methylated. Moreover 2.1% promoter CGIs; 2.3 % intragenic CGIs; 2.5% CGIs in 3′end region; and 4.7% intergenic CGIs were methylated for the normal control. Medip-PCR showed that the identified methylation pattern in MM patients showed similar results in MM cell lines. Expectedly, we also observed that suppressor of cytokine signaling 1 (SOCS1) was hypermethylated at the promoter region (MAT score=19.986) as has been reported in human cell lines. Importantly, another member of SOCS family SOCS3 showed much stronger signal in the promoter region with CpG island (MAT score=31.707) in MM patients compared to normal control. Notably, the expression of two members of TNFR superfamily TNFRSF18 and TNFRSF4 which play an important role in development and programmed cell death of lymphocyte significantly have increased 283 and 141-fold after treatment with 5′aza in MM cell lines. Conclusion: These findings enhance our understanding of the role of DNA methylation in MM, as one of the epigenetic changes that may contribute to the pathogenesis of this disease. The identification and functional characterization of novel key molecules affected by DNA methylation will provide deeper insight into the molecular basis of MM disease. Disclosures: Leleu: Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alessandra Romano ◽  
Concetta Conticello ◽  
Maide Cavalli ◽  
Calogero Vetro ◽  
Alessia La Fauci ◽  
...  

Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3369-3369 ◽  
Author(s):  
Veronica Gonzalez de la Calle ◽  
Ramon Garcia-Sanz ◽  
Eduardo Sobejano ◽  
Enrique M. Ocio ◽  
Noemi Puig ◽  
...  

Abstract BACKGROUND Smoldering multiple myeloma (SMM) is a plasma cell proliferative disorder with no related organ or tissue impairment. It is associated with a risk of progression to symptomatic multiple myeloma (MM) of approximately 10% per year. Several prognostic factors for the progression to active disease have been identified, such as those defined by the Mayo Clinic including the proportion of bone marrow plasma cells, the serum monoclonal protein level at diagnosis and the serum immunoglobulin free light chain ratio (FLC); or those defined by the Spanish Group including the proportion of bone marrow aberrant plasma cells assessed by flow cytometry plus immunoparesis. The presence of Bence Jones (BJ) proteinuria is a myeloma feature associated with renal function and tumor burden as well. There is lack of evidence about the role of BJ proteinuria in SMM as predictor marker of progression to symptomatic disease. AIMS The goal of the present study was to investigate the role of the presence of Bence Jones proteinuria at diagnosis in SMM as predictor of progression to symptomatic disease. METHODS We reviewed 147 medical records of SMM patients from area of Castilla y León (Spain), diagnosed between 1983 and 2013, according to the criteria of the International Myeloma Working Group. The primary endpoint was time to progression to active multiple myeloma (hypercalcemia, renal insufficiency, anemia or bone lesions). RESULTS 147 patients with SMM were included in the analysis. The median age at diagnosis was 69 years-old (range: 34-90).The serum M-protein at diagnosis ranged from 1 to 26 g/l (median,25). 70% of SMM were Ig G subtype. The proportion of bone marrow plasma cells ranged from 1% to 55% (median, 14). In 64 % of SMM, the percentage of aberrant plasma cells assessed by flow cytometry was superior to 95% and 51% had immunoparesis. Bence Jones proteinuria was detected at diagnosis in 40 patients (27%) and the average amount of urinary monoclonal light chain was 236 mg per 24h. Of those patients, 58% had a monoclonal kappa light chain. The FLC ratio was assessed in 18 patients and it was abnormal (<0.26 or >1.65) in 83% of them. The median level of involved Immunoglobulin was 88.5 mg/l (range, 13-1200) and the median ratio of involved to uninvolved was 10.8 (range, 2.2-3360). In 4 patients, FLC ratio was greater than 100. At a median follow-up of 54 months, progression to active disease occurred in 49%. Anemia was the most common CRAB feature at the time of progression. Median time to progression (TTP) to symptomatic disease in the whole series was 63 months. SMM with BJ proteinuria had a significantly shorter median TTP to active disease as compared with patients without BJ proteinuria (21.7 months vs 82.9 months ;HR: 2.44, IC 95%: 1.48-4.02; p<0.001). The progression risk at 2 years in the BJ group of SMM was 53%. Multivariate analysis selected BJ proteinuria at diagnosis as an independent variable for progression to symptomatic MM (HR: 2.47, IC 95%: 1.32-4.63; P=0.005). Using this independent variable, we identified 4 risk categories according to amount of urinary monoclonal light chain: 0 mg per 24h; 1-250 mg/24h; 251-500 mg/24h ; or more than 500 mg/24h, with a median TTP of 83, 37, 16 and 7 months, respectively; p <0.001. CONCLUSIONS The presence of Bence Jones proteinuria at diagnosis in SMM patients is associated with significantly higher risk of progression to active MM (53% risk of progression at 2 years). Moreover, the presence of more than 500 mg of BJ proteinuria can be considered as a marker for the identification of ultra high risk SMM. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 16 (3) ◽  
pp. 26-32
Author(s):  
A. S. Khudovekova ◽  
Ya. A. Rudenko ◽  
A. E. Dorosevich

Multiple myeloma is a tumor of plasma cells, one of the most common malignant blood diseases. It is preceded by a stage called monoclonal gammopathy of undetermined significance, from which true multiple myeloma develops in only a small percentage of cases. It was assumed that this process is associated with the accumulation of genetic mutations, but in recent years there is increasing evidence that the bone marrow microenvironment plays a key role in progression and that it can become a target for therapy that prevents the myeloma development. The review considers the role of mesenchymal stem cells, immune system cells, endotheliocytes, fibroblasts, adipocytes, osteoclasts and osteoblasts in multiple myeloma progression, as well as the impact of the sympathetic nervous system and microbiome composition.


2019 ◽  
Vol 5 (2) ◽  
pp. 37 ◽  
Author(s):  
Cinzia Federico ◽  
Antonio Sacco ◽  
Angelo Belotti ◽  
Rossella Ribolla ◽  
Valeria Cancelli ◽  
...  

Multiple myeloma (MM) is a plasma cell dyscrasia characterized by bone marrow infiltration of clonal plasma cells. The recent literature has clearly demonstrated clonal heterogeneity in terms of both the genomic and transcriptomic signature of the tumor. Of note, novel studies have also highlighted the importance of the functional cross-talk between the tumor clone and the surrounding bone marrow milieu, as a relevant player of MM pathogenesis. These findings have certainly enhanced our understanding of the underlying mechanisms supporting MM pathogenesis and disease progression. Within the specific field of small non-coding RNA-research, recent studies have provided evidence for considering microRNAs as a crucial regulator of MM biology and, in this context, circulating microRNAs have been shown to potentially contribute to prognostic stratification of MM patients. The present review will summarize the most recent studies within the specific topic of microRNAs and circulating microRNAs in MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4475-4475
Author(s):  
Fabricio Carvalho ◽  
Gisele W. B. Colleoni ◽  
Manuella Sampaio Almeida ◽  
Andre Luis Carvalho ◽  
Andre Luiz Vettore

Abstract Introduction: Multiple myeloma (MM) is a B-cell neoplasm characterized by multiorgan dysfunction as a result of bone marrow infiltration by malignant cells and systemic damage of monoclonal circulating protein. Molecular studies have largely focused on acquired genetic aberrations in MM. The accumulation of genetic events is thought to be crucial for the malignant transformation of plasma cells. DNA methylation is associated with several changes in chromatin structure, including the regulation of histone methylation and acetylation and the recruitment of proteins to the methylated sites. This leads to the obstruction of the promoter, and subsequent gene silencing. Aberrant promoter methylation of genes has been described for several genes in MM. This epigenetic event acts as an alternative to mutations and deletions to disrupt tumor suppressor gene function. Objectives: We determined the aberrant DNA methylation status of 20 genes (AIM1, CCNA1, CCND2, CDH1, CDKN2A, CDKN2B, DCC, ESR1, GSTP1, HIC1, MGMT, MINT31, p14ARF, PTGS2, RARβ, RB1, SFN, SOCS1, TGFβR2, and THBS1) in 51 samples of MM and compared the methylation profile with clinicopathological characteristics of the patients. Methods: DNA was isolated using the TRIzol reagent (Invitrogen), from bone marrow aspirates of MM patients. The promoter methylation pattern was determined by quantitative methylation specific PCR (QMSP). Results: The QMSP analysis showed that PTGS2 (100.0%), SFN (100.0%), CDKN2B (90.2%), CDH1 (88.2%), ESR1 (72.5%), HIC1 (70.5%), CCND2 (62.7%), DCC (45.1%), and TGFβR2 (39.2%) were frequently methylated in MM at diagnosis while hypermethylation of RARβ (16.6%), MGMT (12.5%), AIM1 (12.5%), CDKN2A (8.3%), SOCS1 (8.3%), CCNA1 (8.3%), and THBS1 (4.1%) were rare events. There was no methylation of GSTP1, MINT31, p14ARF and RB1 in the samples tested. The median age of the 51 MM patients was 65 years (range, 27–80 years) and 56.8% were male. According the monoclonal component isotype, the patients were classified as IgG isotype (56.6%), IgA isotype (24.5%) and others (18.8%). The kappa light chain monoclonal protein was present in 64.7% of the patients, while the lambda protein was detected in 27.4% of the cases. Based on Durie Salmon staging system, 5.9% were IA, 3.9% were IIA, 52.9% were IIIA and 33.4% were IIIB, confirming that most of our patients were diagnosed at advanced stage disease. According to ISS system, 13.7% of cases were ISS 1, 31.4% ISS 2, 49% ISS 3. More than 86% of the cases have &gt; 50% of monoclonal plasma cells in their bone marrow assessed by biopsies. Methylation of ESR1 was correlated positively with isotype IgA (p = 0.016), while methylation of THBS1 correlated negatively with isotype IgG (p = 0.031). The 3-year overall survival was 31.5%. The clinicopathological parameters such as Durie Salmon Stage III (p = 0.015), ISS 3 (p = 0.007) and non-transplanted cases (p = 0.019) were significantly associated with reduced overall survival. The aberrant DNA methylation analyses showed that hypermethylation of DCC and TGFβR2 were also correlated with poor survival (p = 0.0034 and p = 0.0016, respectively). The multivariate analysis showed ISS (95% CI, 1.24 – 5.86, p = 0.012) and methylated TGFβR2 (95% CI, 1.02 – 4.62, p = 0.044) strongly correlated with poor outcome. Conclusion: The current study represents the first reported quantitative evaluation of MM methylation profile and our results demonstrated that aberrant promoter methylation is a frequent event in this disease. Furthermore, our data provide evidence that TGFβR2 methylation may be useful as prognostic indicator in MM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 951-951 ◽  
Author(s):  
Abdel Kareem Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Costas M Pitsillides ◽  
John T Patton ◽  
...  

Abstract Abstract 951 INTRODUCTION: Multiple Myeloma (MM) is characterized by widespread disease at diagnosis with the presence of multiple lytic lesions and disseminated involvement of the bone marrow (BM), implying that the progression of MM involves a continuous re-circulation of the MM cells in the peripheral blood and re-entrance into the BM. Selectins are adhesion molecules expressed by activated endothelium of venules and leukocytes, and are involved in the primary interaction of lymphocytes with the endothelium of blood vessels. The binding of selectins serves as a biologic brake, making leukocyte quickly decelerate by rolling on endothelial cells, as the first step of extravasation. In this study, we have investigated the role of selectins and their ligands in the regulation of homing of MM Cells to the BM and the therapeutic implications of this role. METHODS AND RESULTS: We have used flow cytometry to characterize the expression of E, L and P-selectins and their ligands on MM cell lines, patient samples and on plasma cells from normal subjects. We found that all MM cell lines and patient samples showed high expression of L and P, but little of no E-selectin. While normal plasma cells showed low expression of all selectins and ligands.(give numbers) A pan-selectin inhibitor GMI-1070 (GlycoMimetics Inc., Gaithersburg, MD) inhibited the interaction of recombinant selectins with the selectin-ligands on the MM cells in a dose response manner. We have tested the role of the selectins and their ligands on the adhesion of MM cells to endothelial cells and found that MM cells adhered preferentially to endothelial cells expressing P-selectin compared to control endothelial cells and endothelial cells expressing E-selectin (p<0.05). Moreover, we found that blockade of P-selectin on endothelial cells reduced their interaction with MM cells (p<0.01), while blockade of E and L-selectin did not show any effect. Treating endothelial cells with GMI-1070 mimicked the effect of blocking P-selectin. Moreover, we found that treating endothelial cells with the chemokine stroma cell-derived factor-1-alpha (SDF1) increased their expression of P but not E or L-selectin detected by flow cytometry. Neither the blockade of each of the selectins and their ligands nor the GMI-1070 inhibited the trans-well chemotaxis of MM cells towards SDF1-alpha. However, blockade of P-selectin (p<0.001) on endothelial cells by GMI-1070 inhibited the trans-endothelial chemotaxis of MM cells towards SDF1-alpha. Both adhesion to endothelial cells and activation with recombinant P-selectin induced phosphorylation of cell adhesion related molecules including FAK, SRC, Cadherins, Cofilin, AKT and GSK3. GMI-1070 decreased the activation of cell adhesion molecules induced by both recombinant P-selectin and endothelial cells. Using in vivo flow cytometry we found that both anti P-selectin antibody and GMI-1070 prevented the extravasation of MM cells out of blood vessels into the bone marrow in mice. Moreover, we found that, in a co-culture system, endothelial cells protected MM cells from bortezomib induced apoptosis, an effect which was reversed by using GMI-1070, showing synergistic effect with bortezomib. CONCLUSION: In summary, we showed that P-selectin ligand is highly expressed in MM cells compared to normal plasma cells, and that it plays a major role in homing of MM cells to the BM, an effect which was inhibited by the pan-selectin inhibitor GMI-1070. This provides a basis for testing the effect of selectin inhibition on tumor initiation and tumor response to therapeutic agents such as bortezomib. Moreover, it provides a basis for future clinical trials for prevention of MM metastasis and increasing efficacy of existing therapies by using selectin inhibitors for the treatment of myeloma. Disclosures: Patton: GlycoMimetics, Inc: Employment. Smith:GlycoMimetics, Inc: Employment. Sarkar:GlycoMimetics, Inc: Employment. Anderson:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Magnani:GlycoMimetics, Inc.: Employment. Ghobrial:Millennium: Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1907-1907
Author(s):  
Eva Sahakian ◽  
Jason B. Brayer ◽  
John Powers ◽  
Mark Meads ◽  
Allison Distler ◽  
...  

Abstract The role of HDACs in cellular biology, initially limited to their effects upon histones, is now appreciated to encompass more complex regulatory functions that are dependent on their tissue expression, cellular compartment distribution, and the stage of cellular differentiation. Recently, our group has demonstrated that the newest member of the HDAC family of enzymes, HDAC11, is an important regulator of IL-10 gene expression in myeloid cells (Villagra A Nat Immunol. 2009). The role of this specific HDAC in B-cell development and differentiation is however unknown. To answer this question, we have utilized a HDAC11 promoter-driven eGFP reporter transgenic mice (TgHDAC11-eGFP) which allows the monitoring of the dynamic changes in HDAC11 gene expression/promoter activity in B-cells at different maturation stages (Heinz, N Nat. Rev. Neuroscience 2001). First, common lymphoid progenitors are devoid of HDAC11 transcriptional activation as indicated by eGFP expression. In the bone marrow, expression of eGFP moderately increases in Pro-B-cells and transitions to the Pre- and Immature B-cells respectively. Expression of eGFP doubles in the B-1 stage of differentiation in the periphery. Of note, examination of both the bone marrow and peripheral blood plasma cell compartment demonstrated increased expression of eGFP/HDAC11 mRNA at the steady-state. These results were confirmed in plasma cells isolated from normal human subjects in which HDAC11 mRNA expression was demonstrated. Strikingly, analysis of primary human multiple myeloma cells demonstrated a significantly higher HDAC11 mRNA expression in malignant cells as compared to normal plasma cells. Similar results were observed in 4/5 myeloma cell lines suggesting that perhaps HDAC11 expression might provide survival advantage to malignant plasma cells. Support to this hypothesis was further provided by studies in HDAC11KO mice in which we observed a 50% decrease in plasma cells in both the bone marrow and peripheral blood plasma cell compartments relative to wild-type mice. Taken together, we have unveiled a previously unknown role for HDAC11 in plasma cell differentiation and survival. The additional demonstration that HDAC11 is overexpressed in primary human myeloma cells provide the framework for specifically targeting this HDAC in multiple myeloma. Disclosures: Alsina: Millennium: Membership on an entity’s Board of Directors or advisory committees, Research Funding. Baz:Celgene Corporation: Research Funding; Millenium: Research Funding; Bristol Myers Squibb: Research Funding; Novartis: Research Funding; Karyopharm: Research Funding; Sanofi: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document