scholarly journals Cetuximab-Mediated Protection from Hypoxia- Induced Cell Death: Implications for Therapy Sequence in Colorectal Cancer

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3050
Author(s):  
Hans Urban ◽  
Gabriele D. Maurer ◽  
Anna-Luisa Luger ◽  
Nadja I. Lorenz ◽  
Benedikt Sauer ◽  
...  

Monoclonal antibodies like cetuximab, targeting the epidermal growth factor receptor (EGFR), and bevacizumab, targeting the vascular endothelial growth factor (VEGF), are an integral part of treatment regimens for metastasized colorectal cancer. However, inhibition of the EGFR has been shown to protect human glioma cells from cell death under hypoxic conditions. In colon carcinoma cells, the consequences of EGFR blockade in hypoxia (e.g., induced by bevacizumab) have not been evaluated yet. LIM1215 and SW948 colon carcinoma and LNT-229 glioblastoma cells were treated with cetuximab, PD153035, and erlotinib and analyzed for cell density and viability. The sequential administration of either cetuximab followed by bevacizumab (CET->BEV) or bevacizumab followed by cetuximab (BEV->CET) was investigated in a LIM1215 (KRAS wildtype) and SW948 (KRAS mutant) xenograft mouse model. In vitro, cetuximab protected from hypoxia. In the LIM1215 model, a survival benefit with cetuximab and bevacizumab monotherapy was observed, but only the sequence CET->BEV showed an additional benefit. This effect was confirmed in the SW948 model. Our observations support the hypothesis that bevacizumab modulates the tumor microenvironment (e.g., by inducing hypoxia) where cetuximab could trigger protective effects when administered later on. The sequence CET->BEV therefore seems to be superior as possible mutual adverse effects are bypassed.

2004 ◽  
Vol 15 (7) ◽  
pp. 3106-3113 ◽  
Author(s):  
Zhong-Zong Pan ◽  
Yvan Devaux ◽  
Prabir Ray

The keratinocyte growth factor receptor (KGFR) is a member of the fibroblast growth factor receptor (FGFR) superfamily. The proximal signaling molecules of FGFRs are much less characterized compared with other growth factor receptors. Using the yeast two-hybrid assay, we have identified ribosomal S6 kinase (RSK) to be a protein that associates with the cytoplasmic domain of the KGFR. The RSK family of kinases controls multiple cellular processes, and our studies for the first time show association between the KGFR and RSK. Using a lung-specific inducible transgenic system we have recently demonstrated protective effects of KGF on the lung epithelium and have demonstrated KGF-induced activation of the prosurvival Akt pathway both in vivo and in vitro. Here we show that a kinase inactive RSK mutant blocks KGF-induced Akt activation and KGF-mediated inhibition of caspase 3 activation in epithelial cells subjected to oxidative stress. It was recently shown that RSK2 recruits PDK1, the kinase responsible for both Akt and RSK activation. When viewed collectively, it appears that the association between the KGFR and RSK plays an important role in KGF-induced Akt activation and consequently in the protective effects of KGF on epithelial cells.


2018 ◽  
Author(s):  
Andrew Woolston ◽  
Khurum Khan ◽  
Georgia Spain ◽  
Louise J Barber ◽  
Beatrice Griffiths ◽  
...  

AbstractAnti-epidermal growth factor receptor (EGFR) antibodies (anti-EGFR-Ab) are effective in a subgroup of patients with metastatic colorectal cancer (CRC). We applied genomic and transcriptomic analyses to biopsies from 35 RAS wild-type CRCs treated with the anti-EGFR-Ab cetuximab in a prospective trial to interrogate the molecular resistance landscape. This validated transcriptomic CRC-subtypes as predictors of cetuximab benefit; identified novel associations of NF1-inactivation and non-canonical RAS/RAF-aberrations with primary progression; and of FGF10- and non-canonical BRAF-aberrations with AR. No genetic resistance drivers were detected in 64% of AR biopsies. The majority of these had switched from the cetuximab-sensitive CMS2-subtype pretreatment to the fibroblast- and growth factor-rich CMS4-subtype at progression. Fibroblast supernatant conferred cetuximab resistance in vitro, together supporting subtype-switching as a novel mechanism of AR. Cytotoxic immune infiltrates and immune-checkpoint expression increased following cetuximab responses, potentially providing opportunities to treat CRCs with molecularly heterogeneous AR with immunotherapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Mandy Gruijs ◽  
Rens Braster ◽  
Marije B. Overdijk ◽  
Tessa Hellingman ◽  
Sandra Verploegen ◽  
...  

Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bashir Lawal ◽  
Yu-Chi Wang ◽  
Alexander T. H. Wu ◽  
Hsu-Shan Huang

Genetic and environmental factors play important roles in cancer progression, metastasis, and drug resistance. Herein, we used a multiomics data analysis to evaluate the predictive and prognostic roles of genetic and epigenetic modulation of c-MET (hepatocyte growth factor receptor)/epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). First, we found that overexpressions of c-MET/EGFR were associated with the infiltration of tumor immune cells and cancer-associated fibroblasts, and were of prognostic relevance in CRC cohorts. We also observed that genetic alterations of c-MET/EGFR in CRC co-occurred with other gene alterations and were associated with overexpression of messenger (m)RNA of some cancer hallmark proteins. More specifically, DNA-methylation and somatic copy number alterations of c-MET/EGFR were associated with immune infiltration, dysfunctional T-cell phenotypes, and poor prognoses of the cohorts. Moreover, we describe two novel gefitinib-inspired small molecules derivatives of 3-phenyl-2H-benzo[e] [1,3]-oxazine-2,4(3H)-dione, NSC777205 and NSC777207, which exhibited wide-spectrum antiproliferative activities and selective cytotoxic preference for drug-sensitive and multidrug-resistant melanoma, renal, central nervous system, colon, and non-small cell lung cancer cell lines. We further provided in silico mechanistic evidence implicating c-MET/EGFR/phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibition in anticancer activities of those compounds. Our overall structure-activity relationship study revealed that the addition of an –OCH3 group to salicylic core of NSC777207 was not favorable, as the added moiety led to overall less-favorable drug properties as well as weaker anticancer activities compared to the properties and activities demonstrated by NSC777205 that has no –OCH3 substituent group. Further in vitro and in vivo analyses in tumor-bearing mice are ongoing in our lab to support this claim and to unravel the full therapeutic efficacies of NSC777205 and NSC777207 in CRC.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


1997 ◽  
Vol 272 (2) ◽  
pp. F222-F228
Author(s):  
C. Kjelsberg ◽  
H. Sakurai ◽  
K. Spokes ◽  
C. Birchmeier ◽  
I. Drummond ◽  
...  

The growth factor/receptor combination of hepatocyte growth factor (HGF)/c-met has been postulated to be critical for mesenchymal-to-epithelial conversion and tubule formation in the developing kidney. We therefore isolated and immortalized cells from embryonic kidneys of met -/- transgenic mice to determine whether these cells were epithelial and able to chemotax and form tubules in vitro. The cells were immortalized with retrovirus expressing human papillomavirus 16 (HPV 16) E6/E7 genes. Two rapidly dividing clones were isolated and found to express the epithelial cell markers cytokeratin, zonula occludens-1, and E-cadherin but not to express the fibroblast marker vimentin. The met -/- cells were able to chemotax in response to epidermal growth factor and transforming growth factor-alpha (TGF-alpha) and form tubules in vitro in response to TGF-alpha but not HGF. These experiments suggest that the HGF/c-met axis is not essential for epithelial cell development in the embryonic kidney and demonstrate that other growth factors are capable of supporting early tubulogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


Sign in / Sign up

Export Citation Format

Share Document