scholarly journals Circulating Interleukin-4 Is Associated with a Systemic T Cell Response against Tumor-Associated Antigens in Treatment-Naïve Patients with Resectable Non-Small-Cell Lung Cancer

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3496
Author(s):  
Seyer Safi ◽  
Yoshikane Yamauchi ◽  
Hans Hoffmann ◽  
Wilko Weichert ◽  
Philipp J. Jost ◽  
...  

Spontaneous T cell responses to tumor-associated antigens (TAs) in the peripheral blood of patients with non-small-cell lung cancer (NSCLC) may be relevant for postoperative survival. However, the conditions underlying these T cell responses remain unclear. We quantified the levels of 27 cytokines in the peripheral blood and tumor tissues from treatment-naïve patients with NSCLC (n = 36) and analyzed associations between local and systemic cytokine profiles and both TA-specific T cell responses and clinical parameters. We defined T cell responders as patients with circulating T cells that were reactive to TAs and T cell nonresponders as patients without detectable TA-specific T cells. TA-specific T cell responses were correlated with serum cytokine levels, particularly the levels of interleukin(IL)-4 and granulocyte colony-stimulating factor (G-CSF), but poorly correlated with the cytokine levels in tumor tissues. Nonresponders showed significantly higher serum IL-4 levels than responders (p = 0.03); the predicted probability of being a responder was higher for individuals with low serum IL-4 levels. In multivariable Cox regression analyses, in addition to IL-4 (hazard ratio (HR) 2.8 (95% confidence interval (CI): 0.78–9.9); p = 0.116), the age-adjusted IL-8 level (HR 3.9 (95% CI: 1.05–14.5); p = 0.042) predicted tumor recurrence. However, this study included data for many cytokines without adjustment for multiple testing; thus, the observed differences in IL-4 or IL-8 levels might be incidental findings. Therefore, additional studies are necessary to confirm these results.

2008 ◽  
Vol 14 (21) ◽  
pp. 6770-6779 ◽  
Author(s):  
Kenichi Koyama ◽  
Hiroshi Kagamu ◽  
Satoru Miura ◽  
Toru Hiura ◽  
Takahiro Miyabayashi ◽  
...  

2018 ◽  
Author(s):  
Rosa de Groot ◽  
Marleen M. van Loenen ◽  
Aurélie Guislain ◽  
Benoit P. Nicolet ◽  
Julian J. Freen-van Heeren ◽  
...  

AbstractNon-small cell lung cancer (NSCLC) is the second most prevalent type of cancer. With the current treatment regimens, the mortality rate remains high. Therefore, better therapeutic approaches are necessary. NSCLCs generally possess many genetic mutations and are well infiltrated by T cells (TIL), making TIL therapy an attractive option. Here we show that T cells from treatment naive, stage I-IVa NSCLC tumors can effectively be isolated and expanded, with similar efficiency as from normal lung tissue. Importantly, 76% (13/17) of tested TIL products isolates from NSCLC lesions exhibited clear reactivity against primary tumor digests, with 0.5%-30% of T cells producing the inflammatory cytokine Interferon (IFN)-γ. Both CD4+and CD8+T cells displayed tumor reactivity. The cytokine production correlated well with CD137 and CD40L expression. Furthermore, almost half (7/17) of the TIL products contained polyfunctional T cells that produced Tumor Necrosis Factor (TNF)-α and/or IL-2 in addition to IFN-γ, a hallmark of effective immune responses. Tumor-reactivity in the TIL products correlated with high percentages of CD103+CD69+CD8+T cell infiltrates in the tumor lesions, with PD-1hiCD4+T cells, and with FoxP3+CD25+CD4+regulatory T cell infiltrates, suggesting that the composition of T cell infiltrates may predict the level of tumor reactivity. In conclusion, the effective generation of tumor-reactive and polyfunctional TIL products implies that TIL therapy will be a successful treatment regimen for NSCLC patients.


2020 ◽  
Vol 10 ◽  
Author(s):  
Tao Hou ◽  
Shun Jiang ◽  
Yapeng Wang ◽  
Yangchun Xie ◽  
Haixia Zhang ◽  
...  

BackgroundThe immune checkpoint inhibitors (ICIs) have achieved great success in the treatment of non-small cell lung cancer (NSCLC) patients. However, the response rate is low. The molecular mechanism involved in the effectiveness of ICIs remains to be elucidated.MethodsATRX mutation incidence among human cancers was analyzed from TCGA database. Atrx-deficient Lewis lung cancer cell line (LLC-sgAtrx) was established via AAV-CRISPR. Subcutaneous and metastasis models were established by subcutaneous and intravenous injection of LLC-sgAtrx and LLC-sgNTC cells into female C57BL/6 mice. The mice were treated with anti-PD1, anti-CLTA4 or Rat IgG2a. Tumor volume was determined by Vernier calipers and the IVIS imaging system. The proportions of CD3+ T cells, CD45+ immune cells, and the expression of pMHC I and PDL1 were determined by flow cytometry. The T cell cytotoxicity was determined by co-culture experiment.ResultsTCGA data showed that Atrx is a tumor suppressor mutated at high frequency among various human cancers. The tumor volume of mice bearing LLC-sgAtrx was significantly shrinked and the median survival of mice was significantly longer after anti-PD1 and anti-CTLA4 treatment. Flowcytometry results showed that Atrx deficiency increase the penetration of CD3+ T cell into the tumor microenvironment and enhanced antigen presentation after IFNγ stimulation. Additionally, the tumor cells with Atrx deficiency were more easily to be damaged by T cells under IFNγ stimulation.ConclusionThe present study demonstrated that Atrx deficiency sensitize lung cancer cells to ICIs by multiple mechanisms. And ATRX may serve as a promising biomarker for ICIs which helps patient stratification and decision making.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2616-2616
Author(s):  
Missak Haigentz ◽  
Suresh S. Ramalingam ◽  
Gregory James Gerstner ◽  
Balazs Halmos ◽  
Neil Morganstein ◽  
...  

2616 Background: ADXS-503 (A503) is an off-the-shelf, attenuated Listeria monocytogenes (Lm)-based immunotherapy bioengineered to elicit potent T cell responses against 22 tumor antigens commonly found in NSCLC (i.e., 11 hotspot mutations and 11 tumor-associated antigens, TAAs). Pembrolizumab (Pembro) is a programmed death receptor-1 (PD-1)- blocking antibody approved for the treatment of advanced lung cancer. A503 and Pembro have complementary mechanisms of immune activation and reversal of immune tolerance. Methods: A phase 1 study of A503 ± Pembro has been conducted in patients (pts) with metastatic squamous or non-squamous NSCLC. In dose-escalation part B, A503 was added-on to Pembro within 12 weeks of the first scan showing disease progression per RECIST criteria v1.1. Both, A503 (1 x108 CFU) and Pembro (200 mg) were infused by IV every 3 weeks until disease progression or limiting toxicity. The dose-escalation cohort has established safety, tolerability and immunogenicity of the combination therapy and it has been further expanded to evaluate efficacy (Goldman JW et.al., SITC 2020). Results: Nine pts have been treated and evaluated in Part B. Pembro + A503 combo has been well tolerated and without immune related AEs. Of the nine evaluable pts, one has achieved partial response (PR) and 3 stable disease (SD), yielding an overall response rate (ORR) of 11% and disease control rate (DCR) of 44%. Two patients have had clinical benefit for over 12 months (i.e., one PR and one SD) and both of them had been on Pembro therapy for 2 years before enrollment. The two other pts with SD have sustained it for almost 6 months thus far. Seven pts have been evaluated for immunogenicity. In all pts there was a transient release of pro-inflammatory cytokines and proliferation of cytotoxic- and memory-CD8+ T cells. Seven evaluable pts had antigen-specific T cells within 1-2 weeks after starting therapy and 4/7 showed antigen spreading. Conclusions: ADXS-503 as an add-on therapy to Pembro at disease progression has been well tolerated and it has induced antigen specific-T cell responses and durable disease control in 44% of pts. Part B cohort is currently enrolling additional pts to further explore the potential reversal of Pembro resistance with ADXS-503. Clinical trial information: NCT03847519.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS2661-TPS2661
Author(s):  
Adam Jacob Schoenfeld ◽  
Mehmet Altan ◽  
Taofeek K. Owonikoko ◽  
Sandra P. D'Angelo ◽  
Brian H. Ladle ◽  
...  

TPS2661 Background: Letetresgene autoleucel (lete-cel; GSK3377794) is an autologous T-cell therapy using a genetically modified T-cell receptor (TCR) to improve recognition of cancer cells expressing NY-ESO-1/LAGE-1a. Next generation NY-ESO-1 TCR T-cell therapies, such as GSK3901961 and GSK3845097, integrate added genetic modifications to enhance anticancer activity. GSK3901961 co-expresses the CD8α chain to stabilize TCR-human leukocyte A (HLA) class I interactions on CD4+ T cells, improving T-cell persistence and helper functions such as Type 1 T-helper antitumor responses. GSK3845097 co-expresses a dominant negative transforming growth factor-β (TGF-β) type II receptor to reduce TGF-β pathway activation and maintain T-cell proliferation, cytokine production, and cytotoxicity in the tumor microenvironment. A first-time-in-human master protocol (NCT04526509) will evaluate safety, tolerability, and recommended phase 2 dose (RP2D) of these and possible subsequent therapies. Substudy 1 will assess GSK3901961 in patients (pts) with advanced non-small cell lung cancer (NSCLC) or synovial sarcoma (SS). Substudy 2 will assess GSK3845097 in pts with advanced SS. Methods: Each substudy includes a dose confirmation stage to assess RP2D and a dose expansion stage. Key inclusion criteria are age ≥18 y; measurable disease per RECIST v1.1; HLA-A*02:01, A*02:05, or A*02:06 positivity; NY-ESO-1/LAGE-1a tumor expression; advanced (metastatic/unresectable) SS with t(X;18) translocation and anthracycline-based therapy receipt/completion/intolerance (SS only); and Stage IV NSCLC, receipt of ≥1 prior line(s) of standard of care (SOC) therapy including programmed death receptor- or ligand-1 inhibitors, and SOC chemotherapy receipt/intolerance (Substudy 1 only). Key exclusion criteria are prior malignancy that is not in complete remission or clinically significant systemic illness; prior receipt of gene/NY-ESO-1–specific therapy or allogenic stem cell/solid organ transplant; central nervous system metastases (SS only); and actionable genetic aberration and receipt/failure of ≥3 systemic therapy lines (Substudy 1 only). Primary endpoints are safety (adverse events) and tolerability (dose-limiting toxicities). Secondary endpoints include investigator-assessed overall response rate, duration of response, and maximum expansion/persistence and phenotype of infiltrating transduced T cells. Exploratory endpoints include laboratory parameters, overall survival, and anti-GSK3901961 or -GSK3845097 titers as applicable. Analyses will be descriptive. The substudies are enrolling. Funding: GSK (209012; NCT04526509). Editorial support was provided by Eithne Maguire, PhD, of Fishawack Indicia, part of Fishawack Health; funded by GSK. Previously presented at AACR 2021 (CT219). Clinical trial information: NCT04526509.


2021 ◽  
Vol 9 (7) ◽  
pp. e002531
Author(s):  
Fenge Li ◽  
Ligang Deng ◽  
Kyle R Jackson ◽  
Amjad H Talukder ◽  
Arjun S Katailiha ◽  
...  

BackgroundNeoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination.MethodsWe report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone.ResultsOut of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3–4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV.ConclusionsThese results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A326-A326
Author(s):  
Brendan Horton ◽  
Duncan Morgan ◽  
Elen Torres-Mejia ◽  
Maria Zagorulya ◽  
Vidit Bhandarkar ◽  
...  

BackgroundIn non-small cell lung cancer (NSCLC), response to checkpoint blockade therapy (CBT) is associated with tumor-infiltrating CD8+ T cells, but not all T cell-infiltrated tumors respond to CBT. The subgroup of T cell-infiltrated but CBT-resistant tumors has been clinically described as containing ”non-functional” T cell responses. Mechanisms governing the generation of non-functional T cell responses remain poorly understood, and treatment options for this subgroup are limited.MethodsWe utilized a transplantable, syngeneic murine NSCLC cell line derived from an autochthonous NSCLC driven by KrasG12D expression and p53 deletion (KP cell line) to model non-functional T cell responses. To study antigen-specific responses, we engineered KP cells to express the model CD8+ T cell antigen SIY for certain experiments. CBT consisted of combined anti-CTLA-4 and anti-PD-L1 therapy.ResultsOrthotopic KP lung tumors failed to respond to CBT, but KP flank tumors were controlled by CBT. Lung and flank tumors contained activated CD8+ T cells, providing a platform to compare functional and non-functional CD8+ T cell responses in NSCLC. Single-cell RNA sequencing revealed that lung tumor-infiltrating CD8+ T cells lacked effector and exhaustion molecules despite clonal expansion. Analysis of antigen-specific CD8+ T cells revealed that this lung cancer-specific T cell dysfunction was established during priming in lung-draining mediastinal lymph nodes (mLN) despite robust T cell proliferation. RNA sequencing and flow cytometry of antigen-specific CD8+ T cells found that T cells primed in the mLN underwent blunted effector differentiation characterized by a lack of effector molecules CD25, Granzyme B, and TIM-3, but retention of TCF-1. This phenotype persisted in lung tumors, consistent with our initial observations of absent effector and exhaustion molecule expression. Many CD8+ T cells from NSCLC patients expressed an analogous gene expression program distinct from T cell exhaustion. TCF-1+ CD8+ T cells in lung tumors did not mediate tumor control and failed to differentiate into effector cells after CBT. To investigate alternative therapeutic strategies of reinvigorating lung tumor-reactive T cells, we focused on IL-2 and IL-12, as expression of their receptors was reduced in mLN-primed T cells. Administering recombinant IL-2 and IL-12 was sufficient to restore effector T cell differentiation, induce lung tumor control, and significantly extend survival of lung tumor-bearing mice.ConclusionsOur results suggest that non-functional CD8+ T cell responses in NSCLC arise from failed effector T cell differentiation during priming. Transient combination therapy with IL-2 and IL-12 overcomes this dysfunctional state to induce protective T cell responses in CBT-resistant tumors.Ethics ApprovalAll mouse experiments were approved by MIT’s Committee on Animal Care (CAC) - DHHS Animal Welfare Assurance # D16-00078


Author(s):  
Sehui Kim ◽  
Ji-Young Jang ◽  
Jaemoon Koh ◽  
Dohee Kwon ◽  
Young A. Kim ◽  
...  

Abstract Background We investigated the role of PD-L1 in the metabolic reprogramming of non-small cell lung cancer (NSCLC). Methods Changes in glycolysis-related molecules and glycolytic activity were evaluated in PD-L1low and PD-L1high NSCLC cells after transfection or knockdown of PD-L1, respectively. Jurkat T-cell activation was assessed after co-culture with NSCLC cells. The association between PD-L1 and immune response-related molecules or glycolysis were analyzed in patients with NSCLC and The Cancer Genome Atlas (TCGA). Results Transfecting PD-L1 in PD-L1low cells enhanced hexokinase-2 (HK2) expression, lactate production, and extracellular acidification rates, but minimally altered GLUT1 and PKM2 expression and oxygen consumption rates. By contrast, knocking-down PD-L1 in PD-L1high cells decreased HK2 expression and glycolysis by suppressing PI3K/Akt and Erk pathways. Interferon-γ (IFNγ) secretion and activation marker expression was decreased in stimulated Jurkat T-cells when co-cultured with HK2-overexpressing vector-transfected tumor cells rather than empty vector-transfected tumor cells. Immunohistochemistry revealed that PD-L1 expression was positively correlated with HK2 expression in NSCLC (p < 0.001). In TCGA, HK2 exhibited a positive linear association with CD274 (PD-L1) expression (p < 0.001) but an inverse correlation with the expression of CD4, CD8A, and T-cell effector function-related genes in the CD274high rather than CD274low group. Consistently, there were fewer CD8+ T-cells in PD-L1positive/HK2high tumors compared to PD-L1positive/HK2low tumors in squamous cell carcinoma. Conclusions PD-L1 enhances glycolysis in NSCLC by upregulating HK2, which might dampen anti-tumor immunity. PD-L1 may contribute to NSCLC oncogenesis by inducing metabolic reprogramming and immune checkpoint.


Sign in / Sign up

Export Citation Format

Share Document