scholarly journals Inhibitors of the Transcription Factor STAT3 Decrease Growth and Induce Immune Response Genes in Models of Malignant Pleural Mesothelioma (MPM)

Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Moshe Lapidot ◽  
Abigail E. Case ◽  
Dalia Larios ◽  
Helen I. Gandler ◽  
Chengcheng Meng ◽  
...  

Malignant pleural mesothelioma (MPM) is an aggressive cancer defined by loss-of-function mutations with few therapeutic options. We examined the contribution of the transcription factor Signal transducer and activator of transcription 3 (STAT3) to cell growth and gene expression in preclinical models of MPM. STAT3 is activated in a variety of tumors and is thought to be required for the maintenance of cancer stem cells. Targeting STAT3 using specific small hairpin RNAs (shRNAs) or with the pharmacologic inhibitors atovaquone or pyrimethamine efficiently reduced cell growth in established cell lines and primary-derived lines while showing minimal effects in nontransformed LP9 mesothelial cells. Moreover, atovaquone significantly reduced viability and tumor growth in microfluidic cultures of primary MPM as well as in an in vivo xenotransplant model. Biological changes were linked to modulation of gene expression associated with STAT3 signaling, including cell cycle progression and altered p53 response. Reflecting the role of STAT3 in inducing localized immune suppression, using both atovaquone and pyrimethamine resulted in the modulation of immunoregulatory genes predicted to enhance an immune response, including upregulation of ICOSLG (Inducible T-Cell Costimulator Ligand or B7H2). Thus, our data strongly support a role for STAT3 inhibitors as anti-MPM therapeutics.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 14084-14084
Author(s):  
L. Lock ◽  
A. Khine ◽  
M. Huesca ◽  
V. Lawson ◽  
R. Peralta ◽  
...  

14084 Background: Lead compound LT-253 was selected from a group of 2-indolyl imidazol [4,5-d] phenanthroline derivatives with anticancer activity. It shows potent and selective anti-proliferative activity against several human cancer types in vitro, and in vivo in xenograft mouse models of human colon carcinoma (HT-29) and non-small cell lung carcinoma (H460). Methods: The mechanism of cell growth inhibition of LT-253 was investigated in HT-29 colon cancer cells using the XTT cell proliferation assay, flow cytometry and apoptosis assays. In vitro and in vivo zinc chelation was determined by competition assays using fluorescent and chromophoric chelators. Gene expression studies were performed by human genome microarray analysis and confirmed by quantitative real- time PCR. The transcription factor activity profile of LT-253-treated cells was determined by a multiplex transcription factor array and electrophoretic mobility shift assays. The functional role of specific genes was evaluated by siRNA gene knock-down. Results: LT-253 functions as chelator of zinc in vitro, and of intracellular labile zinc in HT-29 cells. Moreover, LT-253-mediated HT-29 cell growth inhibition was reversed by zinc supplementation. Gene expression profiling confirmed sustained changes in zinc-sensitive genes such as metallothionine and several zinc transporters, but not copper-sensitive or iron-sensitive genes. LT-253 induces cancer cell growth inhibition primarily through G1/S phase cell cycle arrest. Gene expression and transcription factor activities of both Egr-1 and KLF4 are induced within 4 hr post LT-253 treatment. Moreover, increased expression of both Egr-1 and KLF4 is observed in LT-253-sensitive cancer cell lines of various origins. Importantly, Egr-1 and KLF4 gene knock-down by siRNA reversed the LT-253-mediated cell growth inhibition of HT-29 cells. Conclusion: Selective chelation of intracellular labile zinc pool by LT-253 triggers immediate induction of stress-responsive tumor suppressor Egr-1 and sustained induction of zinc-responsive tumor suppressor KLF4, leading to G1/S phase cell cycle arrest and inhibition of tumor growth. No significant financial relationships to disclose.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii289-iii289
Author(s):  
Laura Franshaw ◽  
Elisha Hayden ◽  
Swapna Joshi ◽  
Jie Liu ◽  
Anahid Ehteda ◽  
...  

Abstract Diffuse Intrinsic Pontine Glioma (DIPG) are devastating paediatric brainstem tumours. Loss of function mutations in DIPG decrease genetic stability and impair DNA damage response pathways promoting tumourigenesis. Polo-like Kinase 1 (PLK1) is a pivotal controller of cell growth, regulating key intermediaries of DNA replication, homologous repair, the cell cycle and cell division. We have found DIPG cultures consistently overexpress PLK1 with inhibition resulting in decreased tumour cell growth, heightened cell cycle arrest and apoptosis. Single agent treatment using PLK1 inhibitors unprecedentedly doubled the median survival of animals harbouring DIPG tumours. Through gene expression analysis, we’ve showed PLK1 inhibition affected multiple pathways which control the cell cycle, cell death regulation, microtubule organization and regulation of cell migration. We found these pathways of differentially expressed genes were significantly enriched for known targets of both E2F1 and E2F4. Analysis of gene expression and proteomic studies also revealed PLK1 inhibition decreased the activation and expression of key tumour promoting mediators within multiple phases of the cell cycle, decreased expression of tumour promoters including MYC and the PI3K/mTOR pathway and reactivated tumour suppressors p53 and PTEN. Assessing these changes in the treated transcriptome and proteome, we aim to develop multiple potentially translatable combination treatment strategies for DIPG. We have performed mechanistic studies and identified synergism with PLK1 inhibitors and the epigenetic regulator panobinostat, bet/bromodomain inhibitor JQ1, dual PI3K/mTOR inhibitor bimiralisib and PI3K inhibitor BKM120. Finally, we found PLK1 inhibitors act as potent radiosensitizers, enhancing the therapeutic effects of radiotherapy in vitro and in vivo.


Author(s):  
Moshe Lapidot ◽  
Abigail E. Case ◽  
Ellen L. Weisberg ◽  
Chengcheng Meng ◽  
Sarah R. Walker ◽  
...  

Abstract Background Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a dismal prognosis. There is increasing interest in targeting chromatin regulatory pathways in difficult-to-treat cancers. In preliminary studies, we found that KDM4A (lysine-specific histone demethylase 4) was overexpressed in MPM. Methods KDM4A protein expression was determined by immunohistochemistry or immunoblotting. Functional inhibition of KDM4A by targeted knockdown and small molecule drugs was correlated to cell growth using cell lines and a xenograft mouse model. Gene expression profiling was performed to identify KDM4A-dependent signature pathways. Results Levels of KDM4A were found to be significantly elevated in MPM patients compared to normal mesothelial tissue. Inhibiting the enzyme activity efficiently reduced cell growth in vitro and reduced tumour growth in vivo. KDM4A inhibitor-induced apoptosis was further enhanced by the BH3 mimetic navitoclax. KDM4A expression was associated with pathways involved in cell growth and DNA repair. Interestingly, inhibitors of the DNA damage and replication checkpoint regulators CHK1 (prexasertib) and WEE1 (adavosertib) within the DNA double-strand break repair pathway, cooperated in the inhibition of cell growth. Conclusions The results establish a novel and essential role for KDM4A in growth in preclinical models of MPM and identify potential therapeutic approaches to target KDM4A-dependent vulnerabilities.


2020 ◽  
Author(s):  
Aling Shen ◽  
Liya Liu ◽  
Yue Huang ◽  
Zhiqing Shen ◽  
Meizhu Wu ◽  
...  

Abstract Background: HAUS6 participates in microtubule-dependent microtubule amplification, but its role in malignancies including colorectal cancer (CRC) has not been explored. We therefore assessed the potential oncogenic activities of HAUS6 in CRC.Methods: We investigated HAUS6 expression and its prognostic value in CRC by microarray, analysis of public datasets, quantitative reverse transcription - polymerase chain reaction (qRT-PCR) and immunohistochemistry. Biological functions of HAUS6 were investigated using loss-of-function and gain-of-function assays in vivo and/or in vitro. Effectors downstream of HAUS6 were identified using cDNA microarray, bioinformatics analysis, qRT-PCR and western-blotting in CRC cells. The putative mechanism by which HAUS6 knockdown elevated p53 and p21 expression were assessed by rescue experiment. The combination effects of HAUS6 knockdown and 5-fluorouracil (5-FU) treatment in cultured CRC cells were further evaluated. Results: HAUS6 mRNA and protein expression is higher in CRC tissues, and high HAUS6 expression is correlated with shorter overall survival in CRC patients. HAUS6 knockdown in CRC cell lines suppressed cell growth in vitro and in vivo by inhibiting cell viability, survival and arresting cell cycle progression at G0/G1, while HAUS6 over-expression increased cell viability. We showed that these effects are dependent on activation of the p53/p21 signalling pathway by reducing p53 and p21 degradation. Moreover, HAUS6 knockdown enhanced the effects of 5-FU treatment in CRC cells by increasing activation of the p53/p21 pathway.Conclusions: Our study highlights a potential oncogenic role for HAUS6 in CRC. Targeting HAUS6 may be a promising novel prognostic marker and chemotherapeutic target for treating CRC patients.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meilin Chan ◽  
Licun Wu ◽  
Zhihong Yun ◽  
Trevor D. McKee ◽  
Michael Cabanero ◽  
...  

AbstractMalignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 181-193 ◽  
Author(s):  
D.J. Andrew ◽  
A. Baig ◽  
P. Bhanot ◽  
S.M. Smolik ◽  
K.D. Henderson

We report on the characterization of the first loss-of-function mutation in a Drosophila CREB gene, dCREB-A. In the epidermis, dCREB-A is required for patterning cuticular structures on both dorsal and ventral surfaces since dCREB-A mutant larvae have only lateral structures around the entire circumference of each segment. Based on results from epistasis tests with known dorsal/ventral patterning genes, we propose that dCREB-A encodes a transcription factor that functions near the end of both the DPP- and SPI-signaling cascades to translate the corresponding extracellular signals into changes in gene expression. The lateralizing phenotype of dCREB-A mutants reveals a much broader function for CREB proteins than previously thought.


Sign in / Sign up

Export Citation Format

Share Document