scholarly journals Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2058
Author(s):  
Raúl Ortíz ◽  
Francisco Quiñonero ◽  
Beatriz García-Pinel ◽  
Marco Fuel ◽  
Cristina Mesas ◽  
...  

The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.

Genetics ◽  
1974 ◽  
Vol 78 (1) ◽  
pp. 149-161
Author(s):  
Sohei Kondo

ABSTRACT Recent knowledge of UV-resistance mechanisms in microorganisms is reviewed in perspective, with emphasis on E. coli. Dark-repair genes are classified into "excision" and "tolerance" (ability to produce a normal copy of DNA from damaged DNA). The phenotype of DNA repair is rather common among the microorganisms compared, and yet their molecular mechanisms are not universal. In contrast, DNA photoreactivation is the simplest and the most general among these three repair systems. It is proposed that DNA repair mechanisms evolved in the order: photoreactivation, excision repair, and tolerance repair. The UV protective capacity and light-inducible RNA photoreactivation possessed by some plant viruses are interpreted to be the result of solar UV selection during a rather recent era of evolution.


2021 ◽  
Vol 11 (8) ◽  
pp. 693
Author(s):  
Corina Daniela Ene ◽  
Simona Roxana Georgescu ◽  
Mircea Tampa ◽  
Clara Matei ◽  
Cristina Iulia Mitran ◽  
...  

The interaction of reactive oxygen species (ROS) with lipids, proteins, nucleic acids and hydrocarbonates promotes acute and chronic tissue damage, mediates immunomodulation and triggers autoimmunity in systemic lupus erythematous (SLE) patients. The aim of the study was to determine the pathophysiological mechanisms of the oxidative stress-related damage and molecular mechanisms to counteract oxidative stimuli in lupus nephritis. Our study included 38 SLE patients with lupus nephritis (LN group), 44 SLE patients without renal impairment (non-LN group) and 40 healthy volunteers as control group. In the present paper, we evaluated serum lipid peroxidation, DNA oxidation, oxidized proteins, carbohydrate oxidation, and endogenous protective systems. We detected defective DNA repair mechanisms via 8-oxoguanine-DNA-glycosylase (OGG1), the reduced regulatory effect of soluble receptor for advanced glycation end products (sRAGE) in the activation of AGE-RAGE axis, low levels of thiols, disulphide bonds formation and high nitrotyrosination in lupus nephritis. All these data help us to identify more molecular mechanisms to counteract oxidative stress in LN that could permit a more precise assessment of disease prognosis, as well as developing new therapeutic targets.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 862 ◽  
Author(s):  
Alexander Schulz ◽  
Felix Meyer ◽  
Anna Dubrovska ◽  
Kerstin Borgmann

The current preclinical and clinical findings demonstrate that, in addition to the conventional clinical and pathological indicators that have a prognostic value in radiation oncology, the number of cancer stem cells (CSCs) and their inherent radioresistance are important parameters for local control after radiotherapy. In this review, we discuss the molecular mechanisms of CSC radioresistance attributable to DNA repair mechanisms and the development of CSC-targeted therapies for tumor radiosensitization. We also discuss the current challenges in preclinical and translational CSC research including the high inter- and intratumoral heterogeneity, plasticity of CSCs, and microenvironment-stimulated tumor cell reprogramming.


2021 ◽  
pp. 107815522098484
Author(s):  
Yaschilal Muche Belayneh ◽  
Gedefew Getnet Amare ◽  
Birhanu Geta Meharie

Colorectal cancer is one of the commonest malignancies worldwide. The estimated lifetime risk of the disease is about 5% with an incidence of one million new cases and 600,000 deaths worldwide every year. It is estimated that in 2019, approximately 134,490 new cases of colorectal cancer will be diagnosed with 49,190 mortalities. Though the disease is regarded as a disorder of the more developed world, the occurrence is steadily increasing in many developing countries. Since chronic inflammation is a known aggravating risk factor for colorectal cancer, anti-inflammatory agents such as aspirin have been used to prevent the development of colorectal cancer and related mortality. The potential mechanisms for the effect of aspirin in the prevention of colorectal cancer have been proposed and broadly classified as cyclooxygenase (COX) dependent and COX-independent. Some of the primary effectors of COX-dependent mechanisms in carcinogenesis are likely to be prostaglandins. In contrast to the reversible action of other nonsteroidal anti-inflammatory drugs, aspirin is known to irreversibly inactivate COX enzymes to suppress production of prostaglandins. COX-independent mechanisms of anticancer effects of aspirin include down-regulation of nuclear factor kappa B activity and Akt activation, modulation of Bcl-2 and Bax family proteins, suppression of vascular endothelial growth factor, induction of apoptosis, disruption of DNA repair mechanisms, and induction of spermidine/spermine N1-acetyltransferase that modulates polyamine catabolism.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Santiago Gómez-Ruiz ◽  
Danijela Maksimović-Ivanić ◽  
Sanja Mijatović ◽  
Goran N. Kaluđerović

The purpose of this paper is to summarize mode of action of cisplatin on the tumor cells, a brief outlook on the metallocene compounds as antitumor drugs as well as the future tendencies for the use of the latter in anticancer chemotherapy. Molecular mechanisms of cisplatin interaction with DNA, DNA repair mechanisms, and cellular proteins are discussed. Molecular background of the sensitivity and resistance to cisplatin, as well as its influence on the efficacy of the antitumor immune response was evaluated. Furthermore, herein are summarized some metallocenes (titanocene, vanadocene, molybdocene, ferrocene, and zirconocene) with high antitumor activity.


2020 ◽  
Author(s):  
Priyanka Verma ◽  
Yeqiao Zhou ◽  
Zhendong Cao ◽  
Peter V. Deraska ◽  
Moniher Deb ◽  
...  

AbstractThe response to Poly (ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair mechanisms and the abundance of lesions that trap PARP enzymes on chromatin. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR based screen, we identify the PAR-binding Snf2-like ATPase, ALC1/CHD1L, as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of BRCA mutant cells and enhanced their sensitivity to PARPi by up to 250-fold, while overcoming several known resistance mechanisms. ALC1 loss was not epistatic to other repair pathways that execute the PARPi response. Instead, ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of repair factors. This resulted in an accumulation of replication associated DNA damage and a reliance on HR. These findings establish PAR-dependent chromatin remodeling as a mechanistically distinct aspect of PARPi responses, implicating ALC1 inhibition as a new approach to overcome therapeutic resistance in HR-deficient cancers.


2020 ◽  
Vol 8 (2) ◽  
pp. 224-232
Author(s):  
Asima Tayyeb

Therapies targeting estrogen receptor (ER) are being widely used to treat ER+ breast cancer patients. Despite early detection and improved survival outcomes, tamoxifen resistance, either intrinsic or acquired- is a major obstacle in effective disease management. Current review will summarize different molecular mechanisms of tamoxifen resistance both intrinsic and acquired in breast cancer treatment. This review not only provides basis to understand the nature of tamoxifen drug resistance but also suggests the mechanisms for its control leading to improved therapeutic interventions.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 563 ◽  
Author(s):  
Dinh-Toi Chu ◽  
Tiep Tien Nguyen ◽  
Nguyen Le Bao Tien ◽  
Dang-Khoa Tran ◽  
Jee-Heon Jeong ◽  
...  

The insufficient and unspecific target of traditional therapeutic approaches in cancer treatment often leads to therapy resistance and cancer recurrence. Over the past decades, accumulating discoveries about stem cell biology have provided new potential approaches to cure cancer patients. Stem cells possess unique biological actions, including self-renewal, directional migration, differentiation, and modulatory effects on other cells, which can be utilized as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. In this review, we emphasize the mechanisms underlying the use of various types of stem cells in cancer treatment. In addition, we summarize recent progress in the clinical applications of stem cells, as well as common risks of this therapy. We finally give general directions for future studies, aiming to improve overall outcomes in the fight against cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Birgit Lohberger ◽  
Dietmar Glänzer ◽  
Nicole Eck ◽  
Sylvia Kerschbaum-Gruber ◽  
Elisabeth Mara ◽  
...  

AbstractAlthough particle therapy with protons has proven to be beneficial in the treatment of chondrosarcoma compared to photon-based (X-ray) radiation therapy, the cellular and molecular mechanisms have not yet been sufficiently investigated. Cell viability and colony forming ability were analyzed after X-ray and proton irradiation (IR). Cell cycle was analyzed using flow cytometry and corresponding regulator genes and key players of the DNA repair mechanisms were measured using next generation sequencing, protein expression and immunofluorescence staining. Changes in metabolic phenotypes were determined with nuclear magnetic resonance spectroscopy. Both X-ray and proton IR resulted in reduced cell survival and a G2/M phase arrest of the cell cycle. Especially 1 h after IR, a significant dose-dependent increase of phosphorylated γH2AX foci was observed. This was accompanied with a reprogramming in cellular metabolism. Interestingly, within 24 h the majority of clearly visible DNA damages were repaired and the metabolic phenotype restored. Involved DNA repair mechanisms are, besides the homology directed repair (HDR) and the non-homologous end-joining (NHEJ), especially the mismatch mediated repair (MMR) pathway with the key players EXO1, MSH3, and PCNA. Chondrosarcoma cells regenerates the majority of DNA damages within 24 h. These molecular mechanisms represent an important basis for an improved therapy.


Author(s):  
Amin Ghareyazi ◽  
Amir Mohseni ◽  
Hamed Dashti ◽  
Abdollah Dehzangi ◽  
Hamid R. Rabiee ◽  
...  

It has now known that at least 10% of samples with pancreatic cancers (PC) contain a causative mutation in the known susceptibility genes, suggesting the importance of identifying cancer-associated genes that carry the causative mutations in high-risk individuals for early detection of PC. In this study, we develop a statistical pipeline using a new concept, called gene-motif, that utilizes both mutated genes and mutational processes to identify 4,211 3-nucleotide PC-associated gene-motifs within 203 significantly mutated genes in PC. Using these gene-motifs as distinguishable features for pancreatic cancer subtyping results in identifying five PC subtypes with distinguishable phenotypes and genotypes. Our comprehensive biological characterization reveals that these PC subtypes are associated with different molecular mechanisms including unique cancer related signaling pathways, in which for most of the subtypes targeted treatment options are currently available. Some of the pathways we identified in all five PC subtypes, including cell cycle and the Axon guidance pathway are frequently seen and mutated in cancer. We also identified Protein kinase C, EGFR (epidermal growth factor receptor) signaling pathway and P53 signaling pathways as potential targets for treatment of the PC subtypes. Altogether, our results uncover the importance of considering both the mutation type and mutated genes in the identification of cancer subtypes and biomarkers.


Sign in / Sign up

Export Citation Format

Share Document