scholarly journals Why Do Children with Acute Lymphoblastic Leukemia Fare Better Than Adults?

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3886
Author(s):  
Alexandra Neaga ◽  
Laura Jimbu ◽  
Oana Mesaros ◽  
Madalina Bota ◽  
Diana Lazar ◽  
...  

It is a new and exciting time for acute lymphoblastic leukemia (ALL). While nearly 50 years ago, only one in nine children with ALL survived with chemotherapy, nowadays nearly 90% of children have a chance of long-term survival. Adults with ALL, as well as the special category of adolescents and young adult (AYA) patients, are catching up with the new developments seen in children, but still their prognosis is much worse. A plethora of factors are regarded as responsible for the differences in treatment response, such as age, ethnicity, disease biology, treatment regimens and toxicities, drug tolerance and resistance, minimal residual disease evaluation, hematopoietic stem cell transplantation timing and socio-economic factors. Taking these factors into account, bringing pediatric-like protocols to adult patient management and incorporating new agents into frontline treatment could be the key to improve the survival rates in adults and AYA.

Blood ◽  
2018 ◽  
Vol 132 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Nicolas Boissel ◽  
André Baruchel

Abstract Adolescent and young adult (AYA) patients with acute lymphoblastic leukemia (ALL) are recognized as a unique population with specific characteristics and needs. In adolescents age 15 to 20 years, the use of fully pediatric protocols is supported by many comparative studies of pediatric and adult cooperative groups. In young adults, growing evidence suggests that pediatric-inspired or even fully pediatric approaches may also dramatically improve outcomes, leading to long-term survival rates of almost 70%, despite diminishing indications of hematopoietic stem-cell transplantation. In the last decade, better knowledge of the ALL oncogenic landscape according to age distribution and minimal residual disease assessments has improved risk stratification. New targets have emerged, mostly in the heterogeneous B-other group, particularly in the Philadelphia-like ALL subgroup, which requires both in-depth molecular investigations and specific evaluations of targeted treatments. The remaining gap in the excellent results reported in children has many other contributing factors that should not be underestimated, including late or difficult access to care and/or trials, increased acute toxicities, and poor adherence to treatment. Specific programs should be designed to take into account those factors and finally ameliorate survival and quality of life for AYAs with ALL.


Blood ◽  
2020 ◽  
Vol 136 (16) ◽  
pp. 1803-1812 ◽  
Author(s):  
Stephen P. Hunger ◽  
Elizabeth A. Raetz

Abstract Relapsed acute lymphoblastic leukemia (ALL) has remained challenging to treat in children, with survival rates lagging well behind those observed at initial diagnosis. Although there have been some improvements in outcomes over the past few decades, only ∼50% of children with first relapse of ALL survive long term, and outcomes are much worse with second or later relapses. Recurrences that occur within 3 years of diagnosis and any T-ALL relapses are particularly difficult to salvage. Until recently, treatment options were limited to intensive cytotoxic chemotherapy with or without site-directed radiotherapy and allogeneic hematopoietic stem cell transplantation (HSCT). In the past decade, several promising immunotherapeutics have been developed, changing the treatment landscape for children with relapsed ALL. Current research in this field is focusing on how to best incorporate immunotherapeutics into salvage regimens and investigate long-term survival and side effects, and when these might replace HSCT. As more knowledge is gained about the biology of relapse through comprehensive genomic profiling, incorporation of molecularly targeted therapies is another area of active investigation. These advances in treatment offer real promise for less toxic and more effective therapy for children with relapsed ALL, and we present several cases highlighting contemporary treatment decision-making.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2635 ◽  
Author(s):  
Jan Starý ◽  
Ondřej Hrušák

Acute lymphoblastic leukemia (ALL) is the most common malignancy in childhood. Despite enormous improvement of prognosis during the last half century, ALL remains a major cause of childhood cancer-related mortality. During the past decade, whole genomic methods have enhanced our knowledge of disease biology. Stratification of therapy according to early treatment response measured by minimal residual disease allows risk group assignment into different treatment arms, ranging from reduction to intensification of treatment. Progress has been achieved in academic clinical trials by optimization of combined chemotherapy, which continues to be the mainstay of contemporary treatment. The availability of suitable volunteer main histocompatibility antigen-matched unrelated donors has increased the rates of hematopoietic stem cell transplantation (HSCT) over the past two decades. Allogeneic HSCT has become an alternative treatment for selected, very-high-risk patients. However, intensive treatment burdens children with severe acute toxic effects that can cause permanent organ damage and even toxic death. Immunotherapeutic approaches have recently come to the forefront in ALL therapy. Monoclonal antibodies blinatumomab and inotuzumab ozogamicin as well as gene-modified T cells directed to specific target antigens have shown efficacy against resistant/relapsed leukemia in phase I/II studies. Integration of these newer modalities into combined regimens with chemotherapy may rescue a subset of children not curable by contemporary therapy. Another major challenge will be to incorporate less toxic regimens into the therapy of patients with low-risk disease who have a nearly 100% chance of being cured, and the ultimate goal is to improve their quality of life while maintaining a high cure rate.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiuyun Fang ◽  
Yang Song ◽  
Xiaoyuan Gong ◽  
Jun Wang ◽  
Qinghua Li ◽  
...  

Although pediatric-like treatment regimen has remarkably improved the survival rates of adults with acute lymphoblastic leukemia (ALL), the outcome of some adult patients is still poor owing to adverse genetic features. These molecular abnormalities, especially gene deletions, may be considered for the prognosis assessment for adult patients with ALL. In this study, using multiplex ligation-dependent probe amplification (MLPA) method, gene deletions were analyzed in from 211 adult B-ALL patients treated in our center. The data showed that 68.2% (144/211) adult B-ALL patients carried gene deletions, and the frequency is much higher in Ph+B-ALL patients. IKZF1 gene deletion is the most common gene deletion in adult B-ALL, followed by CDKN2A/B deletion. In Ph-B-ALL patients, the overall survival of patients with gene deletions is inferior to that of patients without any gene deletions. More obviously, patients with IKZF1 or CDKN2A/B deletion had a worse prognosis, whereas, allogeneic hematopoietic stem cell transplantation could improve OS in patients with IKZF1 deletion, but not in patients with CDKN2A/B deletion. Moreover, the outcome of Ph-B-ALL patients with double deletion of IKZF1and CDKN2A/B may be much worse than that of patients with IKZF1 or CDKN2A/B alone. Minimal residual disease (MRD) was also analyzed together with gene deletions and demonstrated that gene deletions have a negative impact on survival only in MRD positive Ph-B-ALL patients. In conclusion, gene deletions are closely related with the prognosis of adult Ph-B-ALL patients.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2108
Author(s):  
Manuela Tosi ◽  
Orietta Spinelli ◽  
Matteo Leoncin ◽  
Roberta Cavagna ◽  
Chiara Pavoni ◽  
...  

In many clinical studies published over the past 20 years, adolescents and young adults (AYA) with Philadelphia chromosome negative acute lymphoblastic leukemia (Ph− ALL) were considered as a rather homogeneous clinico-prognostic group of patients suitable to receive intensive pediatric-like regimens with an improved outcome compared with the use of traditional adult ALL protocols. The AYA group was defined in most studies by an age range of 18–40 years, with some exceptions (up to 45 years). The experience collected in pediatric ALL with the study of post-induction minimal residual disease (MRD) was rapidly duplicated in AYA ALL, making MRD a widely accepted key factor for risk stratification and risk-oriented therapy with or without allogeneic stem cell transplantation and experimental new drugs for patients with MRD detectable after highly intensive chemotherapy. This combined strategy has resulted in long-term survival rates of AYA patients of 60–80%. The present review examines the evidence for MRD-guided therapies in AYA’s Ph− ALL, provides a critical appraisal of current treatment pitfalls and illustrates the ways of achieving further therapeutic improvement according to the massive knowledge recently generated in the field of ALL biology and MRD/risk/subset-specific therapy


2021 ◽  
Vol 10 (9) ◽  
pp. 1926
Author(s):  
Hiroto Inaba ◽  
Ching-Hon Pui

The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.


Author(s):  
Franco Locatelli ◽  
Gerhard Zugmaier ◽  
Noemi Mergen ◽  
Peter Bader ◽  
Sima Jeha ◽  
...  

The safety and efficacy of blinatumomab, a CD3/CD19-directed bispecific T-cell engager molecule, for treatment of pediatric relapsed/refractory B-cell precursor acute lymphoblastic leukemia (R/R B-ALL) were examined in an open-label, single-arm, expanded access study (RIALTO). Children (>28 days, <18 years) with CD19+ R/R B-ALL received up to five cycles of blinatumomab by continuous infusion (cycle: 4 weeks on/2 weeks off). The primary endpoint was incidence of adverse events. Secondary endpoints included complete response (CR) and measurable residual disease (MRD) response within the first two cycles, relapse-free survival (RFS), overall survival (OS) and allogeneic hematopoietic stem cell transplant (alloHSCT) after treatment. At final data cutoff (1/10/20), 110 patients were enrolled (median age, 8.5 years; 88% ≥5% blasts at baseline). Blinatumomab treatment resulted in a low incidence of grade 3-4 cytokine release syndrome (n=2 [1.8%]) and neurologic events (n=4 [3.6%]). No blinatumomab-related fatal adverse events were reported. The probability of response was not affected by the presence of cytogenetic/molecular abnormalities. Median OS was 14.6 months (95%CI: 11.0─not estimable) and was significantly greater for MRD responders versus MRD non-responders (not estimable vs 9.3; HR 0.18, 95%CI: 0.08─0.39). One-year OS probability was higher for patients who received alloHSCT versus without alloHSCT post-blinatumomab (87% versus 29%). Median RFS for MRD responders (n=57) was 8.0 months (95%CI:3.4─10.1) versus 2.8 months (95%CI: 0.3─9.2) for MRD non-responders (n=10). Of patients achieving CR after 2 cycles, 73.5% (95%CI: 61.4%-83.5%) proceeded to alloHSCT. These findings support the use of blinatumomab as a safe and efficacious treatment for pediatric R/R B-ALL. (ClinicalTrials.gov identifier NCT02187354)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3816-3816 ◽  
Author(s):  
Ryan J. Daley ◽  
Sridevi Rajeeve ◽  
Charlene C. Kabel ◽  
Jeremy J. Pappacena ◽  
Sarah E. Stump ◽  
...  

Introduction: Asparaginase (ASP) has demonstrated a survival benefit in pediatric patients (pts) with acute lymphoblastic leukemia (ALL) and is now part of standard-of-care frontline treatment. As a result, asparaginase preparations have been incorporated into the treatment of adult ALL to improve outcomes. Pegaspargase (PEG-ASP), a modified version of asparaginase with prolonged asparagine depletion, appears to be safe in adults up to age 40 (Stock, et al., Blood, 2019), but is associated with a unique spectrum of toxicities, the risks of which appear to increase with age. Therefore, the safety of PEG-ASP remains a significant concern in older adults w/ ALL. Methods: We conducted a single center retrospective chart review of pts age ≥40 years who received PEG-ASP as part of frontline induction/consolidation or reinduction, between March 2008 and June 2018 at Memorial Sloan Kettering Cancer Center. The primary objective was to evaluate the tolerability and toxicity of PEG-ASP based on the incidence and severity of ASP-related toxicities (hypersensitivity reactions, hypertriglyceridemia, hyperbilirubinemia, transaminitis, pancreatitis, hypofibrinogenemia, etc) according to the Common Terminology Criteria for Adverse Events, version 4.03. Laboratory values recorded were either the peak or the nadir, the more appropriate for toxicity assessment, within a 4-week period following PEG-ASP administration. Secondary objectives were to determine the total number of doses of PEG-ASP administered in comparison to the number of doses intended, and to characterize the rationale for PEG-ASP discontinuation when applicable. Fisher's exact test was used to compare the incidence of PEG-ASP toxicities with respect to pt and treatment characteristics (regimen, age, BMI, gender, Philadelphia chromosome positive (Ph+) vs. Ph-, presence of extramedullary disease, PEG-ASP dose). P values were not adjusted for multiple comparisons. Results: We identified 60 pts with ALL (40 B-ALL and 20 T-ALL) who received at least one dose of PEG-ASP. Nine pts were Ph+. The median pt age at initiation of the treatment was 53, (range, 40 to 80), and 19 pts had a BMI ≥30 kg/m2. Forty-four pts received treatment for newly diagnosed ALL, and 16 pts for relapsed disease. Table 1 lists pt baseline characteristics. Among the 44 pts with newly diagnosed ALL, 27 pts received PEG-ASP as part of pediatric or pediatric-inspired regimens at doses of 2000 - 2500 units/m2, and 1 pt received a modified dose of 1000 units/m2 due to age. The remaining 16 pts received PEG-ASP at doses of 1000 - 2000 units/m2 for consolidation, per established adult regimens (ALL-2 and L-20; Lamanna, et al., Cancer, 2013). Grade 3/4 ASP-related toxicities with a >10% incidence included: hyperbilirubinemia, transaminitis, hypoalbuminemia, hyperglycemia, hypofibrinogenemia, and hypertriglyceridemia. Frontline treatment regimens in which PEG-ASP was used in consolidation cycles only (ALL-2, L-20) were associated w/ a lower incidence of hyperbilirubinemia (p=0.009) and hypertriglyceridemia (p<0.001) compared to those regimens that included PEG-ASP during induction (pediatric/pediatric-inspired regimens) (Table 2). Younger age (40-59 vs. ≥60 years) was associated with a greater risk of hypertriglyceridemia (p<0.001) and higher PEG-ASP dose (≥2000 vs. <2000 units/m2) was associated with a greater risk of hypertriglyceridemia and hypofibrinogenemia (p=0.002 and p=0.025, respectively). Thirty-eight pts (63%) received all intended doses of PEG-ASP. Six pts stopped PEG-ASP to proceed to allogeneic hematopoietic stem cell transplantation (5 in CR1, 1 in CR2), and 7 pts stopped for hypersensitivity reactions. Hepatotoxicity was the only ASP-related toxicity that led to PEG-ASP discontinuation occurring in 5 pts (hyperbilirubinemia, N=4; transaminitis, N=1). The total number of intended doses of PEG-ASP based on regimens used was 186, and 112 were administered. Conclusion: PEG-ASP was incorporated into the treatment of 60 adult ALL pts age ≥40, with manageable toxicity. Seven pts discontinued PEG-ASP due to hypersensitivity reactions and 5 discontinued due to hepatotoxicity, but other reported toxicities did not lead to PEG-ASP discontinuation and the majority of the pts completed all intended doses of PEG-ASP. This study suggests that with careful monitoring, PEG-ASP can safely be administered in adults ≥40 years of age. Disclosures Rajeeve: ASH-HONORS Grant: Research Funding. Tallman:UpToDate: Patents & Royalties; Oncolyze: Consultancy, Membership on an entity's Board of Directors or advisory committees; Delta Fly Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Rigel: Consultancy, Membership on an entity's Board of Directors or advisory committees; Cellerant: Research Funding; Tetraphase: Consultancy, Membership on an entity's Board of Directors or advisory committees; Nohla: Consultancy, Membership on an entity's Board of Directors or advisory committees; BioLineRx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orsenix: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; ADC Therapeutics: Research Funding; Biosight: Research Funding; Jazz Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; KAHR: Consultancy, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees. Geyer:Dava Oncology: Honoraria; Amgen: Research Funding. Park:Takeda: Consultancy; Allogene: Consultancy; Amgen: Consultancy; AstraZeneca: Consultancy; Autolus: Consultancy; GSK: Consultancy; Incyte: Consultancy; Kite Pharma: Consultancy; Novartis: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document