scholarly journals Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53WT Uterine Leiomyosarcoma

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 14
Author(s):  
Victoria Chamberlain ◽  
Yvette Drew ◽  
John Lunec

As there is no optimal therapeutic strategy defined for women with advanced or recurrent uLMS, there is an urgent need for the discovery of novel, targeted approaches. One such area of interest is the pharmacological inhibition of the MDM2-p53 interaction with small-molecular-weight MDM2 inhibitors. Growth inhibition and cytotoxic assays were used to evaluate uLMS cell line responses to MDM2 inhibitors as single agents and in combination, qRT-PCR to assess transcriptional changes and Caspase-Glo 3/7 assay to detect apoptosis. RG7388 and HDM201 are potent, selective antagonists of the MDM2-p53 interaction that can effectively stabilise and activate p53 in a dose-dependent manner. GSK2830371, a potent and selective WIP1 phosphatase inhibitor, was shown to significantly potentiate the growth inhibitory effects of RG7388 and HDM201, and significantly increase the mRNA expression of p53 transcriptional target genes in a p53WT cell line at a concentration that has no growth inhibitory effects as a single agent. RG7388, HDM201 and GSK2830371 failed to induce apoptosis as single agents; however, a combination treatment tipped cells into apoptosis from senescence. These data present the possibility of MDM2 and WIP1 inhibitor combinations as a potential treatment option for p53WT uLMS patients that warrants further investigation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 728-728
Author(s):  
Sang-Woo Kim ◽  
Deepak Rai ◽  
Ricardo C Aguiar

Abstract Abstract 728 Cyclic-AMP (cAMP) is a ubiquitous second messenger with marked growth inhibitory effects in lymphocytes. The phosphodiesterase 4B (PDE4B) is the principal negative regulator cAMP levels in normal and malignant B-cells. We previously showed that PDE4B is expressed at abnormally high levels in fatal diffuse large B-cell lymphoma (DLBCL), rendering these tumors resistant to cAMP's inhibitory activities towards the PI3K/AKT pathway (Blood, 105:308-16, 2005). Glucocorticoids (GC) remain a critical component of treatment of lymphoid cancers, but the mechanism for GC resistant in these tumors remains poorly characterized. A recent study indicated that the AKT/mTOR pathway mediates GC effectiveness in acute lymphoid leukemia (ALL), and identified PDE4B as one of the genes overexpressed in GC-resistant ALLs (Cancer Cell, 10:331-42, 2006). These data, together with our findings that PDE4B regulates PI3K/AKT, suggested that PDE4B may play a role in GC sensitivity. If this concept is correct, PDE4B expression may impinge on the same genes and pathways that control GC response in malignant lymphocytes. To test this hypothesis, we used gene set enrichment analysis (GSEA) and found a robust association between the gene expression signature of DLBCLs expressing high levels of PDE4B and ALLs resistance to GC-induced apoptosis (p and FDR =.014). Consistent with the GSEA data, dexamethasone treatment (50nM), in the presence of intra-cellular cAMP, inhibited the proliferation (as determined by MTS assays) of multiple PDE4B-low (DHL6, DHL10, and WSU-NHL), but not PDE4B-high (Ly1, Ly3, Ly10, DHL7 and Ramos) lymphoma cell lines (53% vs. 4% mean growth inhibition for PDE4B-low and -high cell lines respectively, p<0.01, Student's t-test). To further our investigation, we stably expressed PDE4B (wild-type [WT] or phosphodiesterase inactive [PI] mutant) in the DHL6 cell line, and determined whether this specific genetic modulation could alter the response of these cells to GC. Indeed, DHL6 cells ectopically expressing PDE4B-WT became less sensitive to the growth inhibitory effects of dexamethasone than their PDE4B-PI isogenic counterparts (31% vs. 57% growth inhibition, respectively, p<0.01). To validate the potential therapeutic benefits of this functional interplay, we tested if pharmacological inhibition of PDE4B could reverse the GC resistance found in the Ramos cell line. In agreement with our hypothesis, exposure to the PDE4-specific inhibitor rolipram (20μM) rendered these cells sensitive to dexamethasone, as determined by MTS-based cell proliferation assays (10% growth inhibition for dexamethasone or rolipram alone vs. 60% dexamethasone + rolipram, p<0.01). These data established PDE4B activity as an important regulator of GC resistance in mature B-cell malignancies, possibly via modulation of PI3K/AKT activity. To mechanistically test this theory, we stably expressed a constitutively active AKT mutant (CA-AKT) in the PDE4B-null/GC-sensitive DHL6 cell line. Subsequently, we exposed the DHL6-CA-AKT cell line, and its isogenic counterparts expressing PDE4B-WT or PDE4B-PI to dexamethasone; expression of PDE4B-WT and CA-AKT induced similar degree of GC-resistance in this DLBCL model (31% and 29% growth inhibition respectively vs. 57% for PDE4B-PI, p<0.01). In agreement with an important role for PI3K/AKT/mTOR signaling in this process, the differential sensitivity to GC observed in PDE4B-WT or -PI-expressing lymphoma cells was abrogated by Wortmannin, a PI3K inhibitor. Importantly, the improved GC sensitivity that followed PDE4B modulation was accompanied by inhibition of the AKT/mTOR pathway, as defined by substantial decrease in the phosphorylation levels of AKT, mTOR, eIF4G, p70S6K, S6R, and 4EBP1, measured in western blots. Collectively, our findings indicate that in B-cell lymphomas, PDE4B overexpression, via the modulation of the PI3K/AKT/mTOR pathway, induces GC-resistance. Together with our recent demonstration that PDE4B targeting improves the efficacy of SYK inhibitors in DLBCL (Blood, 113:6153-60, 2009), the data presented here provide the rationale to clinically test PDE4 inhibitors in B-cell lymphomas, alone or in combination with novel or classical chemotherapeutic agents. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Ayşe Kübra Karaboğa Arslan ◽  
Leyla Paşayeva ◽  
Merve Ayşe Esen ◽  
Osman Tugay

Background: Endometrial cancer is one of the most common types of cancer. For this reason, various studies have been carried out on its treatment and the effects of natural products on this disease. Objective: This study aimed to examine the growth inhibitory effects of Eryngium kotschyi Boiss. ethyl acetate [EKE] and butanol [EKB] obtained from the main methanol [EKM] extract from the aerial parts on human endometrium carcinoma [RL95-2] cells and their synergistic effect with cisplatin or doxorubicin. Methods: RL95-2 cells were treated with E. kotschyi extracts either alone or in combination with cisplatin or doxorubicin. The effects on cell growth were determined using the MTT assay and real-time cell analysis xCELLigence. Results: The extracts demonstrated growth inhibitory activity, with a certain degree of selectivity against the RL95-2 cell line. Synergistic effects of EKE/cisplatin or doxorubicin at different concentration levels were demonstrated in RL95-2 cells. In some instances, the EKE/doxorubicin combinations resulted in antagonistic effects. The reduction level of cell viability was different and specific to each combination for the RL95-2 cell line. Conclusion: The growth inhibitory activity of cisplatin or doxorubicin, as a single agent, may be modified by combinations of the extracts and be synergistically enhanced in some cases. A significant synergistic effect of EKE on the RL95-2 cell line with cisplatin and doxorubicin was observed. This cytotoxic effect can be investigated in terms of molecular mechanisms. This study is the first of its kind in the literature. The mechanisms involved in this interaction between chemotherapeutic drugs and plant extracts remain unclear and should be further evaluated.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2228-2228
Author(s):  
Kazunori Murai ◽  
Shugo Kowata ◽  
Akiko Abo ◽  
Tatsuo Oyake ◽  
Shigeki Ito ◽  
...  

Abstract Abstract 2228 Background: Eltrombopag is an oral thrombopoietin receptor agonist for the treatment of immune thrombocytopenic patients who are refractory to the medications including corticosteroid. In RAISE study (The Lancet 2011: 377; 393–402), 79% patients in the eltrombopag group responded to treatment at least once during the study. However, 7% of eltrombopag-treated patients had increase of alanine aminotransferase (ALT) concentration and 4% of total bilirubin. The mechanism of eltrombopag-induced hepatobiliary toxicity remains unknown. In this study, we evaluated the effects of eltrombopag on hepatocytes using HepG2, human hepatocellular carcinoma cell line. Method: Cell proliferation was analyzed by MTT assay. Analysis of apoptosis/necrosis was analyzed by flow cytometry assay using Annexin V and propium iodide (PI) (Annexin-/PI-, viable cells; Annexin+/PI-, early apoptosis cells; Annexin+/PI+, late apoptosis and necrosis cells; Annexin-/PI+, late necrosis cells). Reduced glutathione was measured by DTNB colorimetric method. Murine hepatoma cell line Hepa 1–6 and murine normal liver derived cell line NCTC clone 1469 were also used in this study. Results: HepG2 was incubated with eltrombopag for 72 hrs and then MTT assay was performed. Figure 1a showed the growth inhibition curve of HepG2. HepG2 growth was suppressed by eltrombopag in a dose dependent manner (Figure 1a: without NAC, 12.5 μM 44.3 ± 8.7 %). In the addition of N-acetylcysteine (NAC) canceled the inhibitory effect (Figure 1a: with NAC 10mM: 60.4 ± 22.3 % at 12.5μM eltrombopag, p<0.05). To investigate whether this suppression was due to apoptosis or necrosis, we used PI/ Annexin V assay using flow cytometry. Figure 1b showed that each cell fraction after 72 hrs incubation with eltrombopag. PI positive and PI negative fraction was markedly increased (0μM: 0.7 ± 0.4%, 12.5 μM: 8.0 ± 6.0% p<0.01, 25μM: 39.6 ± 12.2% p<0.001). To confirm that the inhibitory effects of eltrombopag might be due to necrosis, we used IM-54, which is inhibitory molecule against oxidative stress induced necrosis, in MTT assay and PI/ Annexin V assay. As shown in Figure 2 a and 2 b, IM-54 canceled the inhibitory effects of eltrombopag in MTT assay (IM-54 0μM: 18.3 ± 7.5 %, IM-54 10 μM: 33.9 ± 10.6 % at eltrombopag 25μM, p<0.01) and PI/Annexin V assay (IM-54 0μM: 48.3 ± 12.4 %, IM-54: 10 μM 74.2 ± 8.3 % in PI/Annexin V double negative fraction at eltrombopag 25μM, p<0.01). The addition of Caspase-Inhibitor III (Boc-D-FMK) did not cancel the growth inhibition by eltrombopag in MTT assey. We measured GSH concentration of HepG2 cells. After the treatment of eltrombopag for 72 hrs, GSH decreased at 12.5μM of eltrpmbopag, however IM-54 restored the GSH concentration (83 mM at IM-54 0μM and eltrombopag 0 μM, IM-54 0 μM: 42.0 mM and IM-54 10μM: 83.3 mM at eltrombopag 12.5μM). Similar data were obtained in the study using Hepa 1–6 and NCTC clone 1469. Conclusion: Basic structure of eltrombopag is similar to that of 3-bipheyl-carboxylic acid, which is a strong oxidizing agent. Taken together, eltrombopag have an oxidative stress on hepatocytes to result in hepatotoxicity. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yan Zhu ◽  
Christian Klausen ◽  
Jieyun Zhou ◽  
Xiangjie Guo ◽  
Yu Zhang ◽  
...  

Abstract In the present study, a novel dimer, SM1044, selected from a series of dihydroartemisinin (DHA) derivatives containing nitrogen atoms comprising simple aliphatic amine linkers, showed strong growth inhibition in six types of human endometrial cancer (EC) cells, with half maximal inhibitory concentration (IC50) and 95% confidence interval (CI) < 3.6 (1.16~11.23) μM. SM1044 evoked apoptosis and activated caspase-3, −8 and −9 in a concentration- and time-dependent manner, and these effects were manifested early in RL95-2 compared to KLE cells, possibly correlated with the induction of intracellular ONOO−. Catalase and uric acid attenuated the growth inhibitory effects of SM1044 on EC cells, but sodium pyruvate did not. In vivo, the average xenograft tumour growth inhibition rates ranged from 35.8% to 49.9%, respectively, after 2.5 and 5.0 mg/kg SM1044 intraperitoneal treatment, and no obvious behavioural and histopathological abnormalities were observed in SM1044-treated mice in this context. SM1044 predominantly accumulated in the uteri of mice after a single injection. SM1044 displayed efficacy as a tumour suppressor with distinct mechanism of action and unique tissue distribution, properties that distinguish it from other artemisinin analogues. Our findings provide a new clue for artemisinin analogue against cancer.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3497-3497
Author(s):  
Karoline V. Gleixner ◽  
Katharina Blatt ◽  
Barbara Peter ◽  
Emir Hadzijusufovic ◽  
Peter Valent

Abstract Abstract 3497 Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) have a poor prognosis. In these patients, neoplastic mast cells (MC) usually harbor the D816V-mutated variant of KIT and are resistant to conventional cytoreductive drugs and to several tyrosine kinase inhibitors (TKI) such as imatinib. More recently, various KIT kinase blockers including midostaurin (PKC412), have been described to overcome KIT D816V-mediated resistance in neoplastic MC. However, despite encouraging first results observed in clinical trials, these novel kinase blockers are unable to induce long-lasting complete remissions in all patients with ASM and MCL. One reason for the poor response in these patients may be the expression and activation of additional KIT-independent pro-oncogenic signalling molecules and pathways that trigger survival of neoplastic MC. Therefore, current research is seeking novel broadly acting drugs and drug combinations directed against the pro-oncogenic signaling machinery of neoplastic MC. Ponatinib (AP24534) is a broadly acting novel multikinase inhibitor that has been shown to exert major anti-leukemic effects in chronic myeloid leukemia. The aim of our current study was to evaluate the effects of ponatinib on growth and survival of neoplastic MC. Ponatinib was applied as single agent or in combination with midostaurin (PKC412). As assessed by Western blotting, ponatinib was found to inhibit KIT-phosphorylation in both subclones of the human MC leukemia cell line HMC-1, namely HMC-1.1 harboring KIT G560V but not KIT D816V, and HMC-1.2 cells harboring KIT G560V and KIT D816V. Interestingly, the D816V mutation of KIT was found to induce relative resistance against ponatinib. Ponatinib was also found to counteract the phosphorylation of Lyn, a Src-kinase that serves as a major KIT-independent signalling molecule and survival factor in neoplastic MC. Activated STAT5 in MC was also blocked by ponatinib in a dose-dependent manner. In a next step, we examined the effects of ponatinib on proliferation of neoplastic MC by 3H-thymidine uptake experiments. Ponatinib was found to induce dose-dependent growth inhibition in both HMC-1 subclones, with higher IC50-values in HMC-1 cells harbouring KIT D816V (IC50: 100–500 nM) compared to cells lacking KIT D816V (IC50: 1–10 nM). Furthermore, ponatinib was found to inhibit the proliferation of primary neoplastic MC isolated from patients with indolent SM (ISM, n=2) and ASM (n=1), with IC50-values ranging between 50 nM and 500 nM. Growth inhibitory effects of ponatinib on neoplastic MC were accompanied by induction of apoptosis as assessed by light microscopy, flow cytometry, and TUNEL assay. Finally, we were able to demonstrate that ponatinib synergizes with midostaurin in producing growth-inhibition and apoptosis in HMC-1.1 cells and HMC-1.2 cells. Synergistic effects obtained with suboptimal concentrations of single agents were accompanied by a complete blockage of all relevant kinase targets tested including KIT, Lyn, and STAT5. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic MC. KIT D816V-expressing MC are less sensitive to ponatinib. This relative resistance of MC against ponatinib can be overcome by combining ponatinib with midostaurin in an in vitro assay. Whether the drug-combination also exerts major anti-neoplastic effects in vivo in patients with ASM and MCL remains to be determined. Disclosures: Valent: Novartis: Consultancy, Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2944-2944
Author(s):  
Amal Mechaal ◽  
Amudha Ganapathy ◽  
Dolores Mahmud ◽  
Taha Y Taha ◽  
Rajeev Ranjan ◽  
...  

Abstract The treatment outcomes for patients diagnosed with acute myeloid leukemia (AML) are still dismal. Recent advances in understanding AML indicate that the lack of efficacy is primarily due to non-specificity of currently used chemotherapeutics targeting both leukemic stem/progenitor cells (LSC) and normal hematopoietic stem cells (HSC). Thus, a critical barrier is the identification of innovative therapies that selectively target LSC. Histone deacetylase 8 (HDAC8) has been shown to enhance p53 protein deacetylation, which results in inactivation of p53, promoting LSC survival. We hypothesize that enzymatic/non-enzymatic role of HDAC8 is critical for LSC survival but not for HSCs. Then, we characterized our two tetrahydroisoquinoline (TIQ)-based selective HDAC8 inhibitors (HDAC8i) BIP and OCH3 for growth inhibition, apoptosis, activation of caspase 3, integrity of mitochondrial membrane potential (MMP), and acetylation of histone H4 in human leukemia cell lines. The growth inhibitory effects observed in cell lines were validated using bone marrow (BM) or peripheral blood (PB) cells from AML patients. Colony forming cell (CFC) assays were performed using AML BM/PB cells treated with OCH3 or BIP. OCH3 and BIP were also tested for hematotoxicity using normal CB CD34+ cells. Furthermore, we compared class I HDAC isoform engagement in human normal cord blood (CB) CD34+ cells and in SET-2 leukemia cells using our novel photoreactive probe TH1143. In CD34+ cells, TH1143 had higher level of engagement for HDAC1 and 2, whereas engagement of HDAC3 and 8 was minimal. In SET-2 cells, HDAC3 and HDAC8 displayed relatively higher engagement with TH1143 indicating HDAC engagement is likely cell type specific. The biological efficacies of OCH3 at 50uM and BIP at 25uM were noted to exert &gt;50% growth inhibition in KG1 and in K562 leukemia cells. Both OCH3 and BIP significantly increased the number of apoptotic cells and there was an enhanced active caspase-3 activity. Furthermore, OCH3 and BIP treated cells displayed lower red/green ratio in comparison to control, indicative of poor MMP and depolarization to induce apoptosis (Table 1.a). OCH3 and BIP were further validated by using BM/PB cells from AML patients showing growth inhibition. This was also accompanied by increase in apoptotic cells by OCH3 and BIP. In contrast to BIP, OCH3 spared CB CD34+ cells as demonstrated by notably lower growth inhibition, apoptotic cells vs control when compared with primary AML cells from patients. Both OCH3 and BIP displayed minimal inhibition of CFU growth in CD34+ cells. However, HDAC8i induced significant CFU growth inhibition in primary AML samples suggesting that HDAC8i spares normal CFU progenitors but not leukemia progenitors (Table 1.b). Notably, both BIP and OCH3 lack ability to exert acetylation of histone H4, unlike broad spectrum HDAC inhibitor TSA (MFI with OCH3=0.96±0.03, BIP=0.77±0, TSA =1.63±0.15) which is consistent with isoform selectivity of OCH3 and BIP. The leukemia growth inhibitory effects at LSC level was demonstrated using ex vivo OCH3 treated AML patient derived BM/PB cells transplantation in humanized immunodeficient NSGS mice. After 10 to 12 weeks of transplantation mice receiving untreated AML cells had 7.73±2.18% while with OCH3 treatment mice had 4.84±1.37% human CD34+ leukemia cells, a 38% reduction in CD34+ leukemia cells, despite only a single ex vivo exposure to OCH3. Furthermore, in a second model, NSGS humanized mice were transplanted (IV) with primary leukemia cells from AML patients and after 4 weeks injected (IP) with OCH3 or vehicle control. After 12 weeks of transplantation in this second model human primary AML cell burden was 5.74±1.31% (OCH3) and 18.13±12.76% (vehicle control), while mice transplanted with normal CD34+ cells treated similarly with OCH3 or vehicle control displayed no detectable inhibition of human myeloid cell chimerism (OCH3:12.28 ± 3.31% vs vehicle control: 17.92±11.96%). Taken together, our data indicate that HDAC8 isoform inhibitor, OCH3 displayed significant inhibition of primary AML patient derived leukemia cells growth in vitro and in vivo in contrast to normal CD34+ cells. Selective inhibition of HDAC8 is sufficient to cause growth inhibition in primary AML progenitors including LSCs in vivo while sparing normal HSCs thus offer opportunities for further development of HDAC8i as new experimental therapeutics in AML. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3551-3558 ◽  
Author(s):  
Maged S. Mahmoud ◽  
Ryuichi Fujii ◽  
Hideaki Ishikawa ◽  
Michio M. Kawano

In multiple myeloma (MM), the cell surface protein, CD19, is specifically lost while it continues to be expressed on normal plasma cells. To examine the biological significance of loss of CD19 in human myeloma, we have generated CD19 transfectants of a tumorigenic human myeloma cell line (KMS-5). The CD19 transfectants showed slower growth rate in vitro than that of control transfectants. They also showed a lower capability for colony formation as evaluated by anchorage-independent growth in soft agar assay. The CD19 transfectants also had reduced tumorigenicity in vivo when subcutaneously implanted into severe combined immunodeficiency (SCID)-human interleukin-6 (hIL-6) transgenic mice. The growth-inhibitory effect was CD19-specific and probably due to CD19 signaling because this effect was not observed in cells transfected with a truncated form of CD19 that lacks the cytoplasmic signaling domain. The in vitro growth-inhibitory effect was confirmed in a nontumorigenic human myeloma cell line (U-266). However, introduction of the CD19 gene into a human erythroleukemia cell line (K-562) also induced growth inhibition, suggesting that this effect is CD19-specific, but not restricted to myeloma cells. These data suggest that the specific and generalized loss of CD19 in human myeloma cells could be an important factor contributing to the proliferation of the malignant plasma cell clones in this disease.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 59-64 ◽  
Author(s):  
CR Faltynek

Abstract Interferon-alpha and the adenosine deaminase (ADA) inhibitor deoxycoformycin (dCF) have each been shown to be efficacious in the treatment of some lymphoid malignancies and to have potent antiproliferative activities in vitro. This study examined whether dCF and recombinant interferon-alpha A (rIFN-alpha A) were additive, synergistic, or antagonistic in their effects on the cultured B lymphoblastoid cell line Daudi. Treatment of Daudi cells for three to four days with doses of rIFN-alpha A that were growth inhibitory was unexpectedly found to increase the level of ADA activity per cell two- to threefold and therefore to prevent the inhibition of ADA by limiting concentrations of dCF. However, the opposite effects of dCF and rIFN- alpha A on ADA activity did not lead to antagonistic effects on growth inhibition. The higher concentrations of dCF (with deoxyadenosine) necessary for appreciable growth inhibition could inhibit the increased ADA activity in rIFN-alpha A-treated cells, thus resulting in additive antiproliferative effects.


2010 ◽  
Vol 391 (9) ◽  
Author(s):  
Roberta Garozzo ◽  
Maria Angela Sortino ◽  
Carlo Vancheri ◽  
Daniele Filippo Condorelli

Abstract Guanine (GUA), guanosine and GMP exert a marked growth inhibition on the U87 glioma cell line that is not seen with other tested nucleotides, nucleosides and nucleobases. This effect could be replicated in several different human tumoral cell lines. Guanine shows a higher potency than guanosine or GMP, and co-treatments with adenosine or adenine are able to antagonize or revert the antiproliferative effect of guanine. The loss of the guanine effect in a cell line bearing a mutated inactive hypoxanthine-guanine phosphoribosyltransferase (HGPRT), and the decreased potency of GUA in U87 cells silenced for HGPRT transcripts, demonstrates the central role of the intracellular metabolism of GUA for growth-inhibitory effects. Considering the potential application of growth-inhibitory substances in anticancer therapy, knowledge of the molecular mechanism underlying GUA-induced effects encourages studies aimed at defining possible tumoral targets for experimental therapies.


Sign in / Sign up

Export Citation Format

Share Document