scholarly journals Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Ester García-Pras ◽  
Anabel Fernández-Iglesias ◽  
Jordi Gracia-Sancho ◽  
Sofía Pérez-del-Pulgar

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nghiem Xuan Hoan ◽  
Pham Thi Minh Huyen ◽  
Mai Thanh Binh ◽  
Ngo Tat Trung ◽  
Dao Phuong Giang ◽  
...  

AbstractThe inhibitory effects of programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) modulates T-cell depletion. T-cell depletion is one of the key mechanisms of hepatitis B virus (HBV) persistence, in particular liver disease progression and the development of hepatocellular carcinoma (HCC). This case–control study aimed to understand the significance of PD-1 polymorphisms (PD-1.5 and PD-1.9) association with HBV infection risk and HBV-induced liver disease progression. Genotyping of PD-1.5 and PD-1.9 variants was performed by direct Sanger sequencing in 682 HBV-infected patients including chronic hepatitis (CHB, n = 193), liver cirrhosis (LC, n = 183), hepatocellular carcinoma (HCC, n = 306) and 283 healthy controls (HC). To analyze the association of PD-1 variants with liver disease progression, a binary logistic regression, adjusted for age and gender, was performed using different genetic models. The PD-1.9 T allele and PD-1.9 TT genotype are significantly associated with increased risk of LC, HCC, and LC + HCC. The frequencies of PD-1.5 TT genotype and PD-1.5 T allele are significantly higher in HCC compared to LC patients. The haplotype CT (PD-1.5 C and PD-1.9 T) was significantly associated with increased risk of LC, HCC, and LC + HCC. In addition, the TC (PD-1.5 T and PD-1.9 C) haplotype was associated with the risk of HCC compared to non-HCC. The PD-1.5 CC, PD-1.9 TT, genotype, and the CC (PD-1.5 C and PD-1.9) haplotype are associated with unfavorable laboratory parameters in chronic hepatitis B patients. PD-1.5 and PD1.9 are useful prognostic predictors for HBV infection risk and liver disease progression.


2021 ◽  
Vol 22 (8) ◽  
pp. 3956
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Hae June Lee ◽  
Kiwon Song

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


2019 ◽  
Author(s):  
Rune Busk Damgaard ◽  
Helen E. Jolin ◽  
Michael E.D. Allison ◽  
Susan E. Davies ◽  
Andrew N.J. McKenzie ◽  
...  

SummaryThe deubiquitinase OTULIN removes methionine-1 (M1)-linked polyubiquitin chains to regulate TNF-mediated inflammation and cell death, but the physiological role of OTULIN outside the immune system is poorly understood. Here, we identify OTULIN as a liver tumour suppressor in mice. Hepatocyte-specific OTULIN deletion causes spontaneous steatohepatitis, extensive fibrosis, and pre-malignant tumours by eight weeks of age, which progresses to hepatocellular carcinoma by 7-12 months. OTULIN deficiency triggers apoptosis and inflammation in the liver, but surprisingly, steatohepatitis and pre-malignant growth is independent of TNFR1 signalling. Instead, the pathology in OTULIN-deficient livers is associated with increased mTOR activation, and mTOR inhibition with rapamycin reduces fibrosis and pre-malignant growth. This demonstrates that OTULIN is critical for maintaining liver homeostasis and preventing mTOR-driven liver disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yao-Tsung Yeh ◽  
Chien-Wei Chang ◽  
Ren-Jie Wei ◽  
Shen-Nien Wang

Primary liver cancer is the fifth most common cancer worldwide and the third most common cause of cancer mortality. Hepatocellular carcinoma (HCC) accounts for 85% to 90% of primary liver cancers. Major risk factors for HCC include infection with HBV or HCV, alcoholic liver disease, and most probably nonalcoholic fatty liver disease. In general, men are two to four times more often associated with HCC than women. It can be suggested that sex hormones including progesterone may play some roles in HCC. Rather, very limited information discusses its potential involvement in HCC. This paper thus collects some recent studies of the potential involvement of progesterone and related compounds in HCC from basic and clinical aspects. In addition, two synthetic progestins, megestrol acetate (MA) and medroxyprogesterone acetate (MPA), will be discussed thoroughly. It is noted that progesterone can also serve as the precursor for androgens and estrogens produced by the gonadal and adrenal cortical tissues, while men have a higher incidence of HCC than women might be due to the stimulatory effects of androgen and the protective effects of estrogen. Eventually, this paper suggests a new insight on the associations of progesterone and related compounds with HCC development and treatment.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1422 ◽  
Author(s):  
Maria Corina Plaz Torres ◽  
Giorgia Bodini ◽  
Manuele Furnari ◽  
Elisa Marabotto ◽  
Patrizia Zentilin ◽  
...  

Hepatocellular carcinoma (HCC), the most frequent primary liver cancer, is the sixth most common cancer, the fourth leading cause of cancer-related deaths worldwide, and accounts globally for about 800,000 deaths/year. Early detection of HCC is of pivotal importance as it is associated with improved survival and the ability to apply curative treatments. Chronic liver diseases, and in particular cirrhosis, are the main risk factors for HCC, but the etiology of liver disease is rapidly changing due to improvements in the prevention and treatment of HBV (Hepatitis B virus) and HCV (Hepatitis C virus) infections and to the rising incidence of the metabolic syndrome, of which non-alcoholic fatty liver (NAFLD) is a manifestation. NAFLD is now a recognized and rapidly increasing cause of cirrhosis and HCC. Indeed, the most recent guidelines for NAFLD management recommend screening for HCC in patients with established cirrhosis. Screening in NAFLD patients without cirrhosis is not recommended; however, the prevalence of HCC in this group of NAFLD patients has been reported to be as high as 38%, a proportion significantly higher than the one observed in the general population and in non-cirrhotic subjects with other causes of liver disease. Unfortunately, solid data regarding the risk stratification of patients with non-cirrhotic NAFLD who might best benefit from HCC surveillance are scarce, and specific recommendations in this field are urgently needed due to the increasing NAFLD epidemic, at least in Western countries. To further complicate matters, liver ultrasonography, which represents the current standard for HCC surveillance, has a decreased diagnostic accuracy in patients with NAFLD, and therefore disease-specific surveillance tools will be required for the early identification of HCC in this population. In this review, we summarize the most recent evidence on the epidemiology and risk factors for HCC in patients with NAFLD, with and without cirrhosis, and the evidence supporting surveillance for early HCC detection in these patients, reviewing the potential limitations of currently recommended surveillance strategies, and assessing data on the accuracy of potential new screening tools. At this stage it is difficult to propose general recommendations, and best clinical judgement should be exercised, based on the profile of risk factors specific to each patient.


2021 ◽  
Vol 22 (5) ◽  
pp. 2606
Author(s):  
Wasitha P.D. Wass Thilakarathna ◽  
H.P. Vasantha Rupasinghe ◽  
Neale D. Ridgway

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second leading cause of cancer-related deaths worldwide. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcoholic liver disease (ALD), and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are the major extrinsic risk factors of HCC development. Genetic background is pivotal in HCC pathogenesis, and both germline mutations and single nucleotide polymorphism (SNP) are intrinsic risk factors of HCC. These HCC risk factors predispose to hepatic injury and subsequent activation of fibrogenesis that progresses into cirrhosis and HCC. Probiotic bacteria can mitigate HCC risk by modulating host gut microbiota (GM) to promote growth of beneficial microbes and inhibit HCC-associated dysbiosis, thus preventing pathogen-associated molecular patterns (PAMPs)-mediated hepatic inflammation. Probiotics have antiviral activities against HBV and HCV infections, ameliorate obesity and risk of NAFLD/NASH, and their antioxidant, anti-proliferative, anti-angiogenic, and anti-metastatic effects can prevent the HCC pathogenesis. Probiotics also upregulate the expression of tumor suppressor genes and downregulate oncogene expression. Moreover, metabolites generated by probiotics through degradation of dietary phytochemicals may mitigate the risk of HCC development. These multiple anticancer mechanisms illustrate the potential of probiotics as an adjuvant strategy for HCC risk management and treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Muhammet Ozer ◽  
Andrew George ◽  
Suleyman Yasin Goksu ◽  
Thomas J. George ◽  
Ilyas Sahin

The prevalence of primary liver cancer is rapidly rising all around the world. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Unfortunately, the traditional treatment methods to cure HCC showed poor efficacy in patients who are not candidates for liver transplantation. Until recently, tyrosine kinase inhibitors (TKIs) were the front-line treatment for unresectable liver cancer. However, rapidly emerging new data has drastically changed the landscape of HCC treatment. The combination treatment of atezolizumab plus bevacizumab (immunotherapy plus anti-VEGF) was shown to provide superior outcomes and has become the new standard first-line treatment for unresectable or metastatic HCC. Currently, ongoing clinical trials with immune checkpoint blockade (ICB) have focused on assessing the benefit of antibodies against programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte- associated antigen 4 (CTLA-4) as monotherapies or combination therapies in patients with HCC. In this review, we briefly discuss the mechanisms underlying various novel immune checkpoint blockade therapies and combination modalities along with recent/ongoing clinical trials which may generate innovative new treatment approaches with potential new FDA approvals for HCC treatment in the near future.


Livers ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 250-262
Author(s):  
Lisette Chávez-Rodríguez ◽  
Alejandro Escobedo-Calvario ◽  
Soraya Salas-Silva ◽  
Roxana U. Miranda-Labra ◽  
Leticia Bucio ◽  
...  

Hepatocellular carcinoma (HCC) accounts for 85% of primary liver cancer, the third most common cause of cancer-related deaths worldwide. Its incidence has been increasing in both men and women. In Western countries, high-calorie diets, mainly rich in carbohydrates such as fructose, represent a significant concern due to their repercussions on the population’s health. A high-fructose diet is related to the development of Metabolic-Associated Fatty Liver Disease (MAFLD), formerly named Non-Alcoholic Fatty Liver Disease (NAFLD), and the progression of HCC as it potentiates the lipogenic pathway and the accumulation of lipids. However, fructose metabolism seems to be different between the stages of the disease, carrying out a metabolic reprogramming to favor the proliferation, inflammation, and metastatic properties of cancer cells in HCC. This review focuses on a better understanding of fructose metabolism in both scenarios: MAFLD and HCC.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhuo Yu ◽  
Jianfeng Guo ◽  
Yun Liu ◽  
Menglin Wang ◽  
Zhengsheng Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) developed in fibrotic liver does not respond well to immunotherapy, mainly due to the stromal microenvironment and the fibrosis-related immunosuppressive factors. The characteristic of liver sinusoidal endothelial cells (LSECs) in contributing to fibrosis and orchestrating immune response is responsible for the refractory to targeted therapy or immunotherapy of HCC. We aim to seek a new strategy for HCC treatment based on an old drug simvastatin which shows protecting effect on LSEC. Method The features of LSECs in mouse fibrotic HCC model and human HCC patients were identified by immunofluorescence and scanning electron microscopy. The effect of simvastatin on LSECs and hepatic stellate cells (HSCs) was examined by immunoblotting, quantitative RT-PCR and RNA-seq. LSEC-targeted delivery of simvastatin was designed using nanotechnology. The anti-HCC effect and toxicity of the nano-drug was evaluated in both intra-hepatic and hemi-splenic inoculated mouse fibrotic HCC model. Results LSEC capillarization is associated with fibrotic HCC progression and poor survival in both murine HCC model and HCC patients. We further found simvastatin restores the quiescence of activated hepatic stellate cells (aHSCs) via stimulation of KLF2-NO signaling in LSECs, and up-regulates the expression of CXCL16 in LSECs. In intrahepatic inoculated fibrotic HCC mouse model, LSEC-targeted nano-delivery of simvastatin not only alleviates LSEC capillarization to regress the stromal microenvironment, but also recruits natural killer T (NKT) cells through CXCL16 to suppress tumor progression. Together with anti-programmed death-1-ligand-1 (anti-PD-L1) antibody, targeted-delivery of simvastatin achieves an improved therapeutic effect in hemi-splenic inoculated advanced-stage HCC model. Conclusions These findings reveal an immune-based therapeutic mechanism of simvastatin for remodeling immunosuppressive tumor microenvironment, therefore providing a novel strategy in treating HCC. Graphical Abstract


Author(s):  
Sonia Brun ◽  
Eric Raymond ◽  
Firas Bassissi ◽  
Zuzana Macek Jilkova ◽  
Soraya Mezouar ◽  
...  

AbstractBackground & AimsHepatocellular carcinoma (HCC) is the most frequent primary liver cancer. Autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials.Approach & ResultsTo explore the antitumor effects of GNS561, a new autophagy inhibitor, we first achieved in vitro assays using various human cancer cell lines. Having demonstrated that GNS561 displayed high liver tropism using mass spectrometry imaging, the potency of GNS561 on tumor was evaluated in vivo in two HCC models (human orthotopic patient-derived xenograft mouse model and diethylnitrosanime-induced cirrhotic immunocompetent rat model). Oral administration of GNS561 was well tolerated and decreased tumor growth in these two models. GNS561 mechanism of action was assessed in an HCC cell line, HepG2. We showed that due to its lysosomotropic properties, GNS561 could reach and inhibited its enzyme target, palmitoyl-protein thioesterase 1, resulting in lysosomal unbound Zn2+ accumulation, impairment of cathepsin activity, blockage of autophagic flux, altered location of mTOR, lysosomal membrane permeabilization, caspase activation and cell death.ConclusionsGNS561, currently tested in a global Phase 1b/2a clinical trial against primary liver cancer, represents a promising new drug candidate and a hopeful therapeutic strategy in cancer treatment.With an estimated 782,000 deaths in 2018, hepatocellular carcinoma (HCC) stands as the most common primary liver cancer and constitutes the fourth leading cause of cancer-related death worldwide (1). The rising incidence of HCC, the high worldwide mortality rate, and limited therapeutic options at advanced stages, make HCC a significant unmet medical need.Autophagy-related lysosomal cell death, either alone or in connection with several other cell death pathways, has been recognized as a major target for cancer therapy (2). Dysregulated autophagic-lysosomal activity and mTOR signaling were shown to allow cancer cells to become resistant to the cellular stress induced by chemotherapy and targeted therapy (3). Recently, several lysosome-specific inhibitors were shown to target palmitoyl-protein thioesterase 1 (PPT1), resulting in the modulation of protein palmitoylation and autophagy, and antitumor activity in melanoma and colon cancer models (4, 5).Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used for more than 50 years to prevent and treat malarial infections and autoimmune diseases. Based on the lysosomotropic properties and the capacity for autophagy inhibition, these molecules have been proposed as active drugs in cancer (6–9). Over 40 clinical trials have been reported to evaluate the activity of both CQ or HCQ as single agent or in combination with chemotherapy in several tumor types (6–8. However, the required drug concentrations to inhibit autophagy were not achieved in humans, leading to inconsistent results in cancer clinical trials (5, 10). This prompted research to identify novel compounds with potent inhibitory properties against autophagy for cancer therapy.We previously reported that GNS561 was efficient in intrahepatic cholangiocarcinoma (iCCA) by inhibiting late-stage autophagy (11). In this study, we investigated the mechanism of action of GNS561. We identified lysosomal PPT1 as a target of GNS561. Exposure to GNS561 induced lysosomal accumulation of unbound zinc ion (Zn2+), inhibition of PPT1 and cathepsin activity, blockage of autophagic flux and mTOR displacement. Interestingly, these effects resulted in lysosomal membrane permeabilization (LMP) and caspase activation that led to cancer cell death. This mechanism was associated with dose-dependent inhibition of cancer cell proliferation and tumor growth inhibition in two HCC in vivo models. These data establish PPT1 and lysosomes as major targets for cancer cells and led to the development of a clinical program investigating the effects of GNS561 in patients with advanced HCC.


Sign in / Sign up

Export Citation Format

Share Document