scholarly journals Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 155
Author(s):  
Soha Bazyar ◽  
Edward Timothy O’Brien ◽  
Thad Benefield ◽  
Victoria R. Roberts ◽  
Rashmi J. Kumar ◽  
...  

Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag−/− and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.

2020 ◽  
Vol 175 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Nivedita Banerjee ◽  
Hui Wang ◽  
Gangduo Wang ◽  
M Firoze Khan

Abstract Trichloroethene (trichloroethylene, TCE) and one of its reactive metabolites dichloroacetyl chloride (DCAC) are associated with the induction of autoimmunity in MRL+/+ mice. Although oxidative stress plays a major role in TCE-/DCAC-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an oxidative stress-responsive transcription factor that binds to antioxidant responsive element (ARE) and provides protection by regulating cytoprotective and antioxidant gene expression. However, the potential of Nrf2 in the regulation of TCE-/DCAC-mediated autoimmunity is not known. This study thus focused on establishing the role of Nrf2 and consequent inflammatory responses in TCE-/DCAC-mediated autoimmunity. To achieve this, we pretreated Kupffer cells (KCs) or T cells with/without tert-butylhydroquinone (tBHQ) followed by treatment with DCAC. In both KCs and T cells, DCAC treatment significantly downregulated Nrf2 and HO-1 expression along with induction of Keap-1 and caspase-3, NF-κB (p65), TNF-α, and iNOS, whereas pretreatment of these cells with tBHQ attenuated these responses. The in vitro findings were further verified in vivo by treating female MRL+/+ mice with TCE along with/without sulforaphane. TCE exposure in mice also led to reduction in Nrf2 and HO-1 but increased phospho-NF-κB (p-p65) and iNOS along with increased anti-dsDNA antibodies. Interestingly, sulforaphane treatment led to amelioration of TCE-mediated effects, resulting in Nrf2 activation and reduction in inflammatory and autoimmune responses. Our results show that TCE/DCAC mediates an impairment in Nrf2 regulation. Attenuation of TCE-mediated autoimmunity via activation of Nrf2 supports that antioxidants sulforaphane/tBHQ could be potential therapeutic agents for autoimmune diseases.


1998 ◽  
Vol 95 (7) ◽  
pp. 3810-3815 ◽  
Author(s):  
A. T. Vella ◽  
S. Dow ◽  
T. A. Potter ◽  
J. Kappler ◽  
P. Marrack
Keyword(s):  
T Cells ◽  

Blood ◽  
2021 ◽  
Author(s):  
JongBok Lee ◽  
Dilshad H. Khan ◽  
Rose Hurren ◽  
Mingjing Xu ◽  
Yoosu Na ◽  
...  

Venetoclax, a Bcl-2 inhibitor, in combination with the hypomethylating agent, Azacytidine, achieves complete response with or without count recovery in approximately 70% of treatment-naïve elderly patients unfit for conventional intensive chemotherapy. However, the mechanism of action of this drug combination is not fully understood. We discovered that Venetoclax directly activated T cells to increase their cytotoxicity against AML in vitro and in vivo. Venetoclax enhanced T cell effector function by increasing ROS generation through inhibition of respiratory chain supercomplexes formation. In addition, Azacytidine induced a viral-mimicry response in AML cells by activating the STING/cGAS pathway, thereby rendering the AML cells more susceptible to T-cell mediated cytotoxicity. Similar findings were seen in patients treated with Venetoclax as this treatment increased ROS generation and activated T cells. Collectively, this study demonstrates a new immune mediated mechanism of action for Venetoclax and Azacytidine in the treatment of AML and highlights a potential combination of Venetoclax and adoptive cell therapy for patients with AML.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Giovanni Cimmino ◽  
Giovanni Ciccarelli ◽  
Stefano Conte ◽  
Grazia Pellegrino ◽  
Luigi Insabato ◽  
...  

Background: Activation of T-cells plays an important role in the pathophysiology of acute coronary syndromes (ACS). We have previously shown that plaques from ACS patients are characterized by a selective oligoclonal expansion of T-cells, indicating a specific, antigen-mediated recruitment of T-cells within the unstable lesions. We have also previously reported that activated T-cells in vitro express functional Tissue Factor (TF) on their surface. At the moment, however it is not known whether expression of TF by T-cells may contribute to thrombus formation in vivo. Methods: Blood was collected from the aorta and the coronary sinus of 13 NSTEMI and 10 stable CAD patients. CD3+ cells were selectively isolated and TF gene expression (real time PCR)and protein levels (western blot) were evaluated. In additional 7 STEMI patients, thrombotic formation material was obtained from the occluded coronary artery by catheter aspiration during primary PCI. TF expression in CD3+ cells was evaluated by immunohistochemistry and confocal microscopy. Results: Transcardiac TF expression in CD3+ cells was significantly higher in NSTEMI patients as compared to CD3+ cells obtained from stable CAD patients. Interestingly, thrombi aspirated from STEMI patients resulted enriched in CD3+cells, which expressed TF on their surface as shown in the figure. Conclusions: Our data demonstrate that in patients with ACS, T-lymphocytes may express surface TF, thus contributing to the process of thrombus formation. This finding may shed new light into the pathophysiologyof ACS.


1996 ◽  
Vol 184 (2) ◽  
pp. 783-788 ◽  
Author(s):  
N J Karandikar ◽  
C L Vanderlugt ◽  
T L Walunas ◽  
S D Miller ◽  
J A Bluestone

CTLA-4, a CD28 homologue expressed on activated T cells, binds with high affinity to the CD28 ligands, B7-1 (CD80) and B7-2 (CD86). This study was designed to examine the role of CTLA-4 in regulating autoimmune disease. Murine relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE) is a demyelinating disease mediated by PLP139-151-specific CD4+ T cells in SJL/J mice. Anti-CTLA-4 mAbs (or their F(ab) fragments) enhanced in vitro proliferation and pro-inflammatory cytokine production by PLP139-151-primed lymph node cells. Addition of either reagent to in vitro activation cultures potentiated the ability of T cells to adoptively transfer disease to naive recipients. In vivo administration of anti-CTLA-4 mAb to recipients of PLP139-151-specific T cells resulted in accelerated and exacerbated disease. Finally, anti-CTLA-4 treatment of mice during disease remission resulted in the exacerbation of relapses. Collectively, these results suggest that CTLA-4 mediates the downregulation of ongoing immune responses and plays a major role in regulating autoimmunity.


1997 ◽  
Vol 3 (4) ◽  
pp. 238-242 ◽  
Author(s):  
JW Lindsey ◽  
RH Kerman ◽  
JS Wolinsky

Activated T cells are able to stimulate proliferation in resting T cells through an antigen non-specific mechanism. The in vivo usefulness of this T cell-T cell activation is unclear, but it may serve to amplify immune responses. T cell-T cell activation could be involved in the well-documented occurrence of multiple sclerosis (MS) exacerbations following viral infections. Excessive activation via this pathway could also be a factor in the etiology of MS. We tested the hypothesis that excessive T cell-T cell activation occurs in MS patients using in vitro proliferation assays comparing T cells from MS patients to T cells from controls. When tested as responder cells, T cells from MS patients proliferated slightly less after stimulation with previously activated cells than T cells from controls. When tested as stimulator cells, activated cells from MS patients stimulated slightly more non-specific proliferation than activated cells from controls. Neither of these differences were statistically significant We conclude that T cell proliferation in response to activated T cells is similar in MS and controls.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Marilia Rita Pinzone ◽  
Maria Paola Bertuccio ◽  
D. Jake VanBelzen ◽  
Ryan Zurakowski ◽  
Una O’Doherty

ABSTRACT Next-generation sequencing (NGS) represents a powerful tool to unravel the genetic make-up of the HIV reservoir, but limited data exist on its use in vitro. Moreover, most NGS studies do not separate integrated from unintegrated DNA, even though selection pressures on these two forms should be distinct. We reasoned we could use NGS to compare the infection of resting and activated CD4 T cells in vitro to address how the metabolic state affects reservoir formation and dynamics. To address these questions, we obtained HIV sequences 2, 4, and 8 days after NL4-3 infection of metabolically activated and quiescent CD4 T cells (cultured with 2 ng/ml interleukin-7). We compared the composition of integrated and total HIV DNA by isolating integrated HIV DNA using pulsed-field electrophoresis before performing sequencing. After a single-round infection, the majority of integrated HIV DNA was intact in both resting and activated T cells. The decay of integrated intact proviruses was rapid and similar in both quiescent and activated T cells. Defective forms accumulated relative to intact ones analogously to what is observed in vivo. Massively deleted viral sequences formed more frequently in resting cells, likely due to lower deoxynucleoside triphosphate (dNTP) levels and the presence of multiple restriction factors. To our surprise, the majority of these deleted sequences did not integrate into the human genome. The use of NGS to study reservoir dynamics in vitro provides a model that recapitulates important aspects of reservoir dynamics. Moreover, separating integrated from unintegrated HIV DNA is important in some clinical settings to properly study selection pressures. IMPORTANCE The major implication of our work is that the decay of intact proviruses in vitro is extremely rapid, perhaps as a result of enhanced expression. Gaining a better understanding of why intact proviruses decay faster in vitro might help the field identify strategies to purge the reservoir in vivo. When used wisely, in vitro models are a powerful tool to study the selective pressures shaping the viral landscape. Our finding that massively deleted sequences rarely succeed in integrating has several ramifications. It demonstrates that the total HIV DNA can differ substantially in character from the integrated HIV DNA under certain circumstances. The presence of unintegrated HIV DNA has the potential to obscure selection pressures and confound the interpretation of clinical studies, especially in the case of trials involving treatment interruptions.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


2018 ◽  
Vol 119 (11) ◽  
pp. 9334-9345 ◽  
Author(s):  
Jungeun Yu ◽  
Stefano Zanotti ◽  
Lauren Schilling ◽  
Ernesto Canalis

Sign in / Sign up

Export Citation Format

Share Document