scholarly journals Outlook on the Role of Microbial Fuel Cells in Remediation of Environmental Pollutants with Electricity Generation

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 819 ◽  
Author(s):  
Asim Ali Yaqoob ◽  
Asma Khatoon ◽  
Siti Hamidah Mohd Setapar ◽  
Khalid Umar ◽  
Tabassum Parveen ◽  
...  

A wide variety of pollutants are discharged into water bodies like lakes, rivers, canal, etc. due to the growing world population, industrial development, depletion of water resources, improper disposal of agricultural and native wastes. Water pollution is becoming a severe problem for the whole world from small villages to big cities. The toxic metals and organic dyes pollutants are considered as significant contaminants that cause severe hazards to human beings and aquatic life. The microbial fuel cell (MFC) is the most promising, eco-friendly, and emerging technique. In this technique, microorganisms play an important role in bioremediation of water pollutants simultaneously generating an electric current. In this review, a new approach based on microbial fuel cells for bioremediation of organic dyes and toxic metals has been summarized. This technique offers an alternative with great potential in the field of wastewater treatment. Finally, their applications are discussed to explore the research gaps for future research direction. From a literature survey of more than 170 recent papers, it is evident that MFCs have demonstrated outstanding removal capabilities for various pollutants.

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 135
Author(s):  
Asim Ali Yaqoob ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar ◽  
Showkat Ahmad Bhawani ◽  
Anish Khan ◽  
...  

Benthic microbial fuel cells (BMFCs) are considered to be one of the eco-friendly bioelectrochemical cell approaches nowadays. The utilization of waste materials in BMFCs is to generate energy and concurrently bioremediate the toxic metals from synthetic wastewater, which is an ideal approach. The use of novel electrode material and natural organic waste material as substrates can minimize the present challenges of the BMFCs. The present study is focused on cellulosic derived graphene-polyaniline (GO-PANI) composite anode fabrication in order to improve the electron transfer rate. Several electrochemical and physicochemical techniques are used to characterize the performance of anodes in BMFCs. The maximum current density during polarization behavior was found to be 87.71 mA/m2 in the presence of the GO-PANI anode with sweet potato as an organic substrate in BMFCs, while the GO-PANI offered 15.13 mA/m2 current density under the close circuit conditions in the presence of 1000 Ω external resistance. The modified graphene anode showed four times higher performance than the unmodified anode. Similarly, the remediation efficiency of GO-PANI was 65.51% for Cd (II) and 60.33% for Pb (II), which is also higher than the unmodified graphene anode. Furthermore, multiple parameters (pH, temperature, organic substrate) were optimized to validate the efficiency of the fabricated anode in different environmental atmospheres via BMFCs. In order to ensure the practice of BMFCs at industrial level, some present challenges and future perspectives are also considered briefly.


Agropedology ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
Sandeep Kumar ◽  
◽  
Lal Chand Malav ◽  
Shiv Prasad ◽  
Sunita Yadav ◽  
...  

Presently, rapid industrialization and mechanization create a lot of heavy metal pollution around the globe. Both anthropogenic and natural sources are responsible for the discharge of heavy metal in the environment. Anyhow, these toxic metals reach into soil, water bodies, plants and finally to human beings through the food chain. These toxic metals create several problems in plants and living beings after intake from the soil and get accumulated in their body. Heavy metals also exhibit toxic effects on soil biological activities by affecting key microbial processes and also hamper the activities of soil microbes. Recently, due to industrial development in urban areas, heavy metal contamination has become a serious threat to peri-urban agriculture prevalent for vegetable production. There has long been a need for decontamination of these agricultural resources and prevention from the further contamination to avert the negative effects on living beings. In this article, an attempt has been made to provide an extensive understanding about different sources of heavy metal, such as zinc (Zn), copper (Cu), lead (Pb) and cadmium (Cd) etc., in agro-ecosystem and their possible risks to soil and plants. An effort has been also made to present in brief information on remediation techniques specially phytoremediation through this review.


2021 ◽  
Vol 11 (5) ◽  
pp. 2220
Author(s):  
Abanti Shama Afroz ◽  
Donato Romano ◽  
Francesco Inglese ◽  
Cesare Stefanini

Sustainable, green energy harvesting has gained a considerable amount of attention over the last few decades and within its vast field of resources, bio-energy harvesters have become promising. These bio-energy harvesters appear in a wide variety and function either by directly generating energy with mechanisms similar to living organisms or indirectly by extracting energy from living organisms. Presently this new generation of energy harvesters is fueling various low-power electronic devices while being extensively researched for large-scale applications. In this review we concentrate on recent progresses of the three promising bio-energy harvesters: microbial fuel cells, enzyme-based fuel cells and biomechanical energy harvesters. All three of these technologies are already extensively being used in small-scale applications. While microbial fuel cells hold immense potential in industrial-scale energy production, both enzyme-based fuel cells and biomechanical energy harvesters show promises of becoming independent and natural power sources for wearable and implantable devices for many living organisms including humans. Herein, we summarize the basic principles of these bio-energy harvesting technologies, outline their recent advancements and estimate the near future research trends.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 738
Author(s):  
Jonathan Ramirez-Nava ◽  
Mariana Martínez-Castrejón ◽  
Rocío Lley García-Mesino ◽  
Jazmin Alaide López-Díaz ◽  
Oscar Talavera-Mendoza ◽  
...  

Microbial fuel cells (MFCs) are electrochemical devices focused on bioenergy generation and organic matter removal carried out by microorganisms under anoxic environments. In these types of systems, the anodic oxidation reaction is catalyzed by anaerobic microorganisms, while the cathodic reduction reaction can be carried out biotically or abiotically. Membranes as separators in MFCs are the primary requirements for optimal electrochemical and microbiological performance. MFC configuration and operation are similar to those of proton-exchange membrane fuel cells (PEMFCs)—both having at least one anode and one cathode split by a membrane or separator. The Nafion® 117 (NF-117) membrane, made from perfluorosulfonic acid, is a membrane used as a separator in PEMFCs. By analogy of the operation between electrochemical systems and MFCs, NF-117 membranes have been widely used as separators in MFCs. The main disadvantage of this type of membrane is its high cost; membranes in MFCs can represent up to 60% of the MFC’s total cost. This is one of the challenges in scaling up MFCs: finding alternative membranes or separators with low cost and good electrochemical characteristics. The aim of this work is to critically review state-of-the-art membranes and separators used in MFCs. The scope of this review includes: (i) membrane functions in MFCs, (ii) most-used membranes, (iii) membrane cost and efficiency, and (iv) membrane-less MFCs. Currently, there are at least 20 different membranes or separators proposed and evaluated for MFCs, from basic salt bridges to advanced synthetic polymer-based membranes, including ceramic and unconventional separator materials. Studies focusing on either low cost or the use of natural polymers for proton-exchange membranes (PEM) are still scarce. Alternatively, in some works, MFCs have been operated without membranes; however, significant decrements in Coulombic efficiency were found. As the type of membrane affects the performance and total cost of MFCs, it is recommended that research efforts are increased in order to develop new, more economic membranes that exhibit favorable properties and allow for satisfactory cell performance at the same time. The current state of the art of membranes for MFCs addressed in this review will undoubtedly serve as a key insight for future research related to this topic.


2020 ◽  
Vol 17 (7) ◽  
pp. 768-779
Author(s):  
Natarajan Narayanan ◽  
Vasudevan Mangottiri ◽  
Kiruba Narayanan

Microbial Fuel Cells (MFCs) offer a sustainable solution for alternative energy production by employing microorganisms as catalysts for direct conversion of chemical energy of feedstock into electricity. Electricity from urine (urine-tricity) using MFCs is a promising cost-effective technology capable of serving multipurpose benefits - generation of electricity, waste alleviation, resource recovery and disinfection. As an abundant waste product from human and animal origin with high nutritional values, urine is considered to be a potential source for extraction of alternative energy in the coming days. However, developments to improve power generation from urine-fed MFCs at reasonable scales still face many challenges such as non-availability of sustainable materials, cathodic limitations, and low power density. The aim of this paper was to critically evaluate the state-of-the-art research and developments in urine-fed MFCs over the past decade (2008-2018) in terms of their construction (material selection and configuration), modes of operation (batch, continuous, cascade, etc.) and performance (power generation, nutrient recovery and waste treatment). This review identifies the preference for sources of urine for MFC application from human beings, cows and elephants. Among these, human urine-fed MFCs offer a variety of applications to practice in the real-world scenario. One key observation is that, effective disinfection can be achieved by optimizing the operating conditions and MFC configurations without compromising on performance. In essence, this review demarcates the scope of enhancing the reuse potential of urine for renewable energy generation and simultaneously achieving resource recovery.


Sign in / Sign up

Export Citation Format

Share Document