scholarly journals Influences of Magnesium Content in Rehydrated Mixed Oxides on Furfural Conversion

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1484
Author(s):  
Kocík Jaroslav ◽  
Kolena Jiří ◽  
Akhmetzyanova Uliana ◽  
Tišler Zdeněk

In this study, Mg-Fe catalysts with various molar ratio (Mg/Fe 1:1-10:1), prepared by calcination and subsequent rehydration of hydrotalcite structures, were characterized, tested and evaluated as suitable catalysts for the aldol condensation of furfural with acetone. XRD analyses confirmed that the layered structure was completely restored by rehydration in the catalysts with Mg:Fe molar ratio 3:1 and 4:1. TPD-CO2 showed that the catalysts of this molar ratio had the highest basicity. Rehydrated Mg-Fe catalysts were tested in aldol condensation carried out in a glass batch reactor at 60 °C, atmospheric pressure, 2 wt% of catalyst and acetone/furfural molar ratio 10:1. The catalysts with Mg/Fe molar ratio of 3:1 and 4:1 showed total furfural conversion. As high basicity causes a high activity of the catalyst, our results suggest that the rehydrated mixed oxides with molar ratio 3 to 4:1 were promising new catalysts for the aldol condensation of furfural with acetone.

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1068
Author(s):  
Zdeněk Tišler ◽  
Pavla Vondrová ◽  
Kateřina Hrachovcová ◽  
Kamil Štěpánek ◽  
Romana Velvarská ◽  
...  

Aldol condensation reaction is usually catalysed using homogeneous catalysts. However, the heterogeneous catalysis offers interesting advantages and the possibility of cleaner biofuels production. Nowadays, one of the most used kinds of heterogeneous catalysts are hydrotalcites, which belong to a group of layered double hydroxides. This paper describes the aldol condensation of cyclohexanone (CH) and furfural (F) using Mg/Al mixed oxides and rehydrated mixed oxides in order to compare the catalyst activity after calcination and rehydration, as well as the possibility of its regeneration. The catalysts were synthesized by calcination and subsequent rehydration of the laboratory-prepared and commercial hydrotalcites, with Mg:Al molar ratio of 3:1. Their structural and chemical properties were determined by several analytical methods (inductively coupled plasma analysis (ICP), X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), specific surface area (BET), thermogravimetric analysis (TGA), temperature programmed desorption (TPD)). F-CH aldol condensation was performed in a continuous fixed-bed reactor at 80 °C, CH:F = 5:1, WHSV 2 h−1. The rehydrated laboratory-prepared catalysts showed a 100% furfural conversion for more than 55 h, in contrast to the calcined ones (only 24 h). The yield of condensation products FCH and F2CH was up to 68% and 10%, respectively. Obtained results suggest that Mg/Al mixed oxides-based heterogeneous catalyst is suitable for use in the aldol condensation reaction of furfural and cyclohexanone in a fixed-bed reactor, which is an interesting alternative way to obtain biofuels from renewable sources.


Author(s):  
L.D. Schmidt ◽  
K. R. Krause ◽  
J. M. Schwartz ◽  
X. Chu

The evolution of microstructures of 10- to 100-Å diameter particles of Rh and Pt on SiO2 and Al2O3 following treatment in reducing, oxidizing, and reacting conditions have been characterized by TEM. We are able to transfer particles repeatedly between microscope and a reactor furnace so that the structural evolution of single particles can be examined following treatments in gases at atmospheric pressure. We are especially interested in the role of Ce additives on noble metals such as Pt and Rh. These systems are crucial in the automotive catalytic converter, and rare earths can significantly modify catalytic properties in many reactions. In particular, we are concerned with the oxidation state of Ce and its role in formation of mixed oxides with metals or with the support. For this we employ EELS in TEM, a technique uniquely suited to detect chemical shifts with ∼30Å resolution.


2010 ◽  
Vol 658 ◽  
pp. 29-32 ◽  
Author(s):  
Kanit Soongprasit ◽  
Duangdao Aht-Ong ◽  
Viboon Sricharoenchaikul ◽  
Duangduen Atong

. La1-xCexCoO3 (x=0, 0.2, and 0.4) perovskite-type mixed oxides using polyvinyl alcohol (PVA) as complexing agent at two molar ratio of metal ion to PVA (1:1 and 1:2) were successfully prepared by sol-gel process. The precursor included lanthanum (II) nitrate hexahydrate, cerium (II) nitrate hexahydrate, and cobalt (II) nitrate hexahydrate where polyvinyl alcohol was added as complexing agent. The suitable condition of Cerium (Ce) substitution and PVA molar ratio were established for further application in hydrocarbon conversion to high value added products. TGA thermogram of as-prepared precursor showed that PVA absolutely decomposed at temperature higher than 500°C. XRD patterns of calcined catalyst showed both LaCoO3 rhombohedral and CeO2 cubic structures that confirmed the formation of mixed crystal structure. Nevertheless, Co3O4 slightly appeared with low peak intensity which came from the oxidation reaction of as-prepared catalyst during calcinations. XRD showed that PVA did not effect to crystal structure of synthesized catalyst. Higher PVA content added in the precursor cause the reduction of crystal growth of catalyst in calcinations step. In contrast, morphology of catalyst is directly related with PVA content such that the spongy and sheet-like structure were formed with increasing PVA content which prevented the agglomeration of particles. The results showed that PVA content play an important role in morphology of perovskite-type mixed oxide catalysts but did not affected to their crystal structures.


2016 ◽  
Vol 81 ◽  
pp. 33-36 ◽  
Author(s):  
Decheng Liang ◽  
Guozhu Li ◽  
Yanhong Liu ◽  
Jinmeng Wu ◽  
Xiangwen Zhang

2018 ◽  
Vol 11 (03) ◽  
pp. 1850057 ◽  
Author(s):  
Reza Meshkini Far ◽  
Olena V. Ischenko ◽  
Alla G. Dyachenko ◽  
Oleksandr Bieda ◽  
Snezhana V. Gaidai ◽  
...  

Here, we report, for the first time, on the catalytic hydrogenation of CO2 to methane at atmospheric pressure. For the preparation of hydrogenation catalysts based on Ni and Fe metals, a convenient method is developed. According to this method, low-temperature reduction of the co-precipitated Ni and Fe oxides with hydrogen gives the effective and selective bimetallic Ni[Formula: see text]Fe[Formula: see text], Ni[Formula: see text]Fe[Formula: see text] and Ni[Formula: see text]Fe[Formula: see text] catalysts. At the temperature range of 300–400[Formula: see text]C, they exhibit a high efficiency of CH4 production with respect to monometallic Ni and Fe catalysts. The results imply a synergistic effect between Ni and Fe which caused the superior activity of the Ni[Formula: see text]Fe[Formula: see text] catalyst conversing [Formula: see text]% of CO2 into CH4 at 350[Formula: see text]C. To adapt the Ni–Fe catalysts in the industry, the effect of two different carriers on the efficiency of the alumina-supported Ni[Formula: see text]Fe[Formula: see text] catalyst was investigated. It is found that the Ni[Formula: see text]Fe[Formula: see text]/[Formula: see text]-Al2O3 catalyst effectively conversed CO2 giving 100% methane yield already at 275[Formula: see text]C.


Author(s):  
Natalija Koprivanac ◽  
Dinko Vujevic

Organic synthetic dyes are widely produced and used today. Significant losses of organic and inorganic content occurs during the manufacturing and application of dyes and its discharge in the effluent presents a threat to the eco-systems due to general toxicity and resistance to destruction by biological treatment methods. Particularly azo dyes are of special environmental concern due to their degradation products such as aromatic amines, which are considered highly carcinogenic. So, dyes have to be removed from coloured wastewater before discharge. However, traditional treatment methods (adsorption, coagulation/flocculation) mainly transfer the contaminants from wastewater to secondary waste. Therefore, advanced oxidation processes seem to be sustainable and clean technology to decolorize and minimize organic dyes content from wastewater. In this paper, degradation of an azo dye C.I. Direct Orange 39 (DO39) using Fenton type processes (Fe2+/H2O2, Fe3+/H2O2and Fe0/H2O2) has been performed. The molar ratio of Fenton’s type reagents has been varied in the range of 1 : 5 up to 1 : 50 at 0.5 and 1.0 mM concentrations of iron salts and iron powder. Experiments have been conducted for two hours in a batch reactor with magnetic stirring, ambient conditions and pH 3. The process efficiency and formation of degradation by-products have been determined on the basis of results obtained by UV/VIS spectrophotometric, total organic carbon (TOC) and high performance liquid chromatography (HPLC) analyses. The optimal Fenton and Fenton ``like" processes parameters have been applied in the photo reactor, too. It has been observed that simultaneous utilization of UV irradiation with Fenton's and Fenton ``like" reagents increases the degradation of DO39 dye. Degradation of the dye in dilute aqueous solution follows pseudo-first order kinetics. The maximal decolourization of 20 mg L-1 DO39 in water of 93.2% and TOC degradation of 76.9% were obtained using Fe3+/H2O2= 1 : 5 molar ratio. The results indicate that the treatment of DO39 dye wastewater with UV/Fe3 +/H2O2 system was found to be the most efficient.


2021 ◽  
pp. 92-97
Author(s):  
M.E. Sharanda ◽  
◽  
A.M. Mylin ◽  
O.Yu. Zinchenko ◽  
V.V. Brei ◽  
...  

The vapor-phase oxidation of mixtures of propylene glycol with methanol and ethanol to methyl and ethyl lactate, respectively, on supported CeO2/Al2O3 catalyst with 10 wt.% CeO2 content was studied. The steel flow reactor with a fixed catalyst bed (4 cm3) was used. 20 wt.% solution of propylene glycol in alcohol was fed to the reactor inlet by Waters 950 pump at LHSV= 0.5-0.8 h-1. Reaction temperature and pressure were varied in the interval of 190-250 0C and 1.3-1.8 bars respectively. Compressed air was given to the reactor inlet at the molar ratio of propylene glycol/O2 = 1. The reaction products were analyzed using gas chromatography (Agilent 7820A) and 3C NMR (Bruker Avance 400) methods. Studied oxidation of propylene glycol in the presence of methanol describes by total reaction CH3CHOHCH2OH +O2 + СН3OH = CH3CHOHCOOСН3 +2H2O At first, hydroxyacetone is formed that is further oxidized to pyruvic aldehyde, which attaches alcohol to form hemiacetal. Then, hemiacetal of methyl glyoxal rearranges into methyl lactate by Cannizzaro. At 220 0C and load on a catalyst of < 2 mmol PG/gcat/h, the selectivity towards methyl lactate reaches 70 wt.% at 100 % propylene glycol conversion. The main by-products are formed as the result of acetaldehyde transformation. Acetaldehyde could be formed at hydroxyacetone aldol decondensation. In the presence of ethanol, the formation of a significant amount of acetaldehyde and its aldol condensation products as well as the formation of diethoxyethane are observed. Therefore, ethyl lactate selectivity at 100 % propylene glycol conversion does not exceed 45 %. Supported CeO2/SiO2 contact was tested in this oxidation reaction also. However, CeO2/SiO2 provides the low, up to 25%, selectivity towards methyl lactate at full propylene glycol conversion. It was shown that at the same conditions methyl lactate is formed with higher selectivity then ethyl lactate. The high methyl lactate yield up to 70 wt.% could be obtained via vapor-phase oxidation of 20% mixture of propylene glycol with methanol by air oxygen on supported CeO2/Al2O3 catalyst at 210 - 220°С and at time contact of 3-4 seconds.


Author(s):  
Vijay A. Juwar ◽  
Ajit P. Rathod

Abstract The present study deals with the treatment of complex waste (WW) treated for removal of chemical oxygen demand (COD) of the food industry by a sono-Fenton process using a batch reactor. The response surface methodology (RSM) was employed to investigate the five independent variables, such as reaction time, the molar ratio of H2O2/Fe2+, volume ratio of H2O2/WW, pH of waste, and ultrasonic density on COD removal. The experimental data was optimized. The optimization yields the conditions: Reaction time of 24 min, HP:Fe molar ratio of 2.8, HP:WW volume ratio of 1.9 ml/L, pH of 3.6 and an ultrasonic density of 1.8 W/L. The predicted value of COD was 91% and the experimental result was 90%. The composite desirability value (D) of the predicted percent of COD removal at the optimized level of variables was close to one (D = 0.991).


2015 ◽  
Vol 13 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Emine Sert

Abstract Within the framework of green chemistry, catalysts should be met different criteria such as biodegradability, recyclability, flammability, non-toxicity and low price. Acidic deep eutectic solvent (DES) have been synthesized for this purpose, by mixing para-toluene sulfonic acid and choline chloride. The catalytic activity of DES was studied in the esterification of acrylic acid with n-butanol. The usage of DES as catalyst is simple, safe and cheap. The effects of temperature, catalyst loading, n-butanol/acrylic acid molar ratio on the conversion of acrylic acid were performed. The batch reactor experiments were carried out at temperatures of 338, 348, 358 and 368 K, molar ratio of butanol to acrylic acid of 1, 2,3 and catalyst loading of 10, 15, 20 and 90 g/L. 90.2% of acrylic acid conversion was achieved at a temperature of 358 K and catalyst loading of 20 g/L. Reusability of DES was investigated. Reusability and catalytic activity makes DES efficient as catalyst.


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


Sign in / Sign up

Export Citation Format

Share Document