scholarly journals Production of Chlorine Dioxide Using Hydrogen Peroxide and Chlorates

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1478
Author(s):  
Mayra K. S. Monteiro ◽  
Ángela Moratalla ◽  
Cristina Sáez ◽  
Elisama V. Dos Santos ◽  
Manuel A. Rodrigo

Chlorine dioxide was produced by the reduction of chlorate with hydrogen peroxide in strongly acidic media. To avoid reaction interference during measuring procedures, UV spectra were acquired to monitor the chlorate reduction. This reduction led to the formation of chlorine dioxide and notable concentrations of chlorite and hypochlorous acid/chlorine, suggesting that the hydrogen peroxide:chlorate ratio is important. Once chlorates are transformed to chlorine dioxide, the surplus hydrogen peroxide promoted the further reaction of the chlorinated species down to less-important species. Moreover, chlorine dioxide was stripped with the outlet gas flow. A linear relationship was established between the amount of limiting reagent consumed and the maximum height of the absorption peak at 360 nm after testing with different ratios of hydrogen peroxide and chlorate, allowing calculations of the maximum amount of chlorine dioxide formed. To verify the reproducibility of the method, a test with four replicates was conducted in a hydrogen peroxide/chlorate solution where chlorine dioxide reduction was not promoted due to the presence of surplus chlorate in the reaction medium after the test. Results confirmed the efficient formation of this oxidant, with maximum concentrations of 8.0 ± 0.33 mmol L−1 in 400–450 min and a conversion percentage of 97.6%. Standard deviations of 0.14–0.49 mmol L−1 were obtained during oxidation (3.6–6.5% of the average), indicating good reproducibility.

TAPPI Journal ◽  
2016 ◽  
Vol 15 (9) ◽  
pp. 581-586 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART ◽  
DOUGLAS C. PRYKE ◽  
JOHN VANDERHEIDE

The WestRock mill in Covington, VA, USA, initiated a long term diagnostic and optimization program for all three of its bleaching lines. Benchmarking studies were used to help identify optimization opportunities. Capital expenditures for mixing improvement, filtrate changes, equipment repair, other equipment changes, and species changes were outside the scope of this work. This focus of this paper is the B line, producing southern hardwood pulp in a D(EP)DD sequence at 88% GE brightness. The benchmarking study and optimization work identified the following opportunities for improved performance: nonoptimal addition of caustic and hydrogen peroxide to the (EP) stage, carryover of D0 filtrate to the (EP) stage, and carryover of (EP) filtrate to the D1 stage. As a result of actions the mill undertook to address these opportunities, D0 kappa factor decreased about 5%, sodium hydroxide consumption in the (EP) stage decreased about 35%, chlorine dioxide consumption in the D1 stage decreased about 25%, and overall bleaching cost decreased about 15%.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3844
Author(s):  
Lijuan Li ◽  
Bingdong Li ◽  
Liwei Feng ◽  
Xiaoqiu Zhang ◽  
Yuqian Zhang ◽  
...  

In this work, Au-modified F-TiO2 is developed as a simple and efficient photocatalyst for H2O2 production under ultraviolet light. The Au/F-TiO2 photocatalyst avoids the necessity of adding fluoride into the reaction medium for enhancing H2O2 synthesis, as in a pure TiO2 reaction system. The F− modification inhibits the H2O2 decomposition through the formation of the ≡Ti–F complex. Au is an active cocatalyst for photocatalytic H2O2 production. We compared the activity of TiO2 with F− modification and without F− modification in the presence of Au, and found that the H2O2 production rate over Au/F-TiO2 reaches four times that of Au/TiO2. In situ electron spin resonance studies have shown that H2O2 is produced by stepwise single-electron oxygen reduction on the Au/F-TiO2 photocatalyst.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajinkya More ◽  
Thomas Elder ◽  
Zhihua Jiang

Abstract This review discusses the main factors that govern the oxidation processes of lignins into aromatic aldehydes and acids using hydrogen peroxide. Aromatic aldehydes and acids are produced in the oxidative degradation of lignin whereas mono and dicarboxylic acids are the main products. The stability of hydrogen peroxide under the reaction conditions is an important factor that needs to be addressed for selectively improving the yield of aromatic aldehydes. Hydrogen peroxide in the presence of heavy metal ions readily decomposes, leading to minor degradation of lignin. This degradation results in quinones which are highly reactive towards peroxide. Under these reaction conditions, the pH of the reaction medium defines the reaction mechanism and the product distribution. Under acidic conditions, hydrogen peroxide reacts electrophilically with electron rich aromatic and olefinic structures at comparatively higher temperatures. In contrast, under alkaline conditions it reacts nucleophilically with electron deficient carbonyl and conjugated carbonyl structures in lignin. The reaction pattern in the oxidation of lignin usually involves cleavage of the aromatic ring, the aliphatic side chain or other linkages which will be discussed in this review.


2015 ◽  
Vol 2015 (30) ◽  
pp. 5011-5020 ◽  
Author(s):  
Ying Hu ◽  
Attila K. Horváth ◽  
Sasa Duan ◽  
György Csekő ◽  
Sergei V. Makarov ◽  
...  

2015 ◽  
Vol 17 (4) ◽  
pp. 23-31 ◽  
Author(s):  
Agnieszka Wróblewska ◽  
Edyta Makuch ◽  
Małgorzata Dzięcioł ◽  
Roman Jędrzejewski ◽  
Paweł Kochmański ◽  
...  

Abstract This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide) and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol%) at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol%) at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.


2021 ◽  
pp. 13-19
Author(s):  
Zhanat А. Dayev ◽  
Gulzhan E. Shopanova ◽  
Bakytgul А. Toksanbaeva

The article deals with one of the important tasks of modern flow measurement, which is related to the measurement of the flow rate and the amount of wet gas. This task becomes especially important when it becomes necessary to obtain information about the separate amount of the dry part of the gas that is contained in the form of a mixture in the wet gas stream. The paper presents the principle of operation and structure of the invariant system for measuring the flow rate of wet gas, which is based on the combined use of differential pressure flowmeters and Coriolis flowmeters. The operation of the invariant wet gas flow rate measurement system is based on the simultaneous application of the multichannel principle and the partial flow measurement method. Coriolis flowmeters and the differential pressure flowmeter are used as the main elements of the system. The proposed measurement system does not offer applications for gases with abundant drip humidity. The article provides information about the test results of the proposed invariant system. The estimation of the metrological characteristics of the invariant system when measuring the flow rate of wet gas is given. The obtained test results of the invariant wet gas flow rate measurement system are relevant for natural gas production, transportation, and storage facilities.


2017 ◽  
Vol 47 (12) ◽  
Author(s):  
Natalia da Costa Marchiori ◽  
Fabiano Muller Silva ◽  
Maurício Laterça Martins ◽  
Hilton Amaral Junior ◽  
Bruno Corrêa da Silva

ABSTRACT: Ichthyophthiriasis is a worldwide fish disease with great financial impact on freshwater fish farming due to its associated high mortality rates. Current study assesses the parasiticidal capacity of hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) against the causative agent, Ichthyophthirius multifiliis, in jundiá. Median lethal concentration (LC50, 96h) of each chemical agent was established, as well as the minimum inhibitory concentration of hydrogen peroxide for the parasite´s infectious larval phase (theront). Products were tested asynchronously in parasitized fingerlings for short and long baths at the following concentrations and exposure times: 1. Hydrogen peroxide: (T1) continuous bath - 30ppm and (T2) 50ppm; (T3) short bath - 150ppm, during 1h and (T4) 250ppm during 1h; control group (without any chemical agent). 2. Chlorine dioxide: (T1) continuous bath - 4ppm and (T2) 20ppm; (T3) short bath - 200ppm, during 1min; (T4) short bath - 400ppm, during 1min and control group. Data analysis demonstrated a concentration of 82.54ppm of the commercial product (or 24.76ppm of the active chemical agent) as LC50, 96h of H2O2 and 38.4ppm product (or 2.68ppm of the active chemical agent) for ClO2. Hydrogen peroxide concentration causing 100% mortality rate of theronts in 1h was 25ppm (product, or 7.5ppm of the active chemical agent). At the end of the fourth day of curative experiment, 98% of the animals died by ichthyophthiriasis. No treatment was effective against the parasite.


2013 ◽  
Vol 591 ◽  
pp. 122-125
Author(s):  
Li Jiao Yang ◽  
Si Chen ◽  
Yan Zhang ◽  
Nan Chun Chen ◽  
Jun Gao ◽  
...  

Extracting indium from water quenching slag, which contains poor indium, by two process of leaching, the effect of different oxidants and dosages on the leaching rate of indium in water quenching slag were studied. The leaching conditions: temperature 80 °C, leaching time 2 h, the liquid to solid ratio of neutral leaching 8︰1, the liquid to solid ratio of acid leaching 2︰1, initial concentration of sulfuric acid 500 g·L-1, adding different oxidants, the concentration was detected by crystal violet spectrophotometry. Test results showed that the leaching rate of indium was significantly improved by adding hydrogen peroxide and potassium permanganate. Compared with the effect of different oxidants, the effect of potassium permanganate was significantly higher than that of hydrogen peroxide on the leaching rate of indium.


1988 ◽  
Vol 65 (5) ◽  
pp. 2349-2353 ◽  
Author(s):  
L. S. Terada ◽  
C. J. Beehler ◽  
A. Banerjee ◽  
J. M. Brown ◽  
M. A. Grosso ◽  
...  

Xanthine oxidase (XO) and xanthine dehydrogenase (XD) activities decreased in lungs isolated from rats and cultured lung endothelial cells that had been exposed to hyperoxia. Purified XO activity also decreased after addition of a variety of chemically generated O2 metabolite species (superoxide anion, hydrogen peroxide, hydroxyl radical, or hypochlorous acid), hypoxanthine, or stimulated neutrophils in vitro. XO inactivation by chemically, self-, or neutrophil-generated O2 metabolites was decreased by simultaneous addition of various O2 metabolite scavengers but not their inactive analogues. Since XO appears to contribute to a variety of biological processes and diseases, hyperoxia- or O2 metabolite-mediated decreases in XO activity may be an important cellular control mechanism.


Sign in / Sign up

Export Citation Format

Share Document