scholarly journals Enhancing the Ethynylation Performance of CuO-Bi2O3 Nanocatalysts by Tuning Cu-Bi Interactions and Phase Structures

Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Zhipeng Wang ◽  
Zhuzhu Niu ◽  
Quanai Hao ◽  
Lijun Ban ◽  
Haitao Li ◽  
...  

Catalytic systems consisting of copper oxide and bismuth oxide are commonly employed for the industrial production of 1,4-butynediol (BD) through ethynylation. However, few studies have investigated the influence mechanism of Bi for these Cu-based catalysts. Herein, a series of nanostructured CuO-Bi2O3 catalysts were prepared by co-precipitation followed by calcination at different temperatures. The obtained catalysts were applied to the ethynylation reaction. The textural and crystal properties of the catalysts, their reduction behavior, and the interactions between copper and bismuth species, were found to strongly depend on temperature. When calcined at 600 °C, strong interactions between Cu and Bi in the CuO phase facilitated the formation of highly dispersed active cuprous sites and stabilized the Cu+ valency, resulting in the highest BD yield. Bi2O3 was completely absent when calcined at 700 °C, having been converted into the spinel CuBi2O4 phase. Spinel Cu2+ was released gradually to form active Cu+ species over eight catalytic cycles, which continuously replenished the decreasing activity resulting from the formation of metallic Cu and enhanced catalytic stability. Moreover, the positive correlation between the in-situ-formed surface Cu+ ions and BD yield suggests that the amount of Cu+ ions is the key factor for ethynylation of formaldehyde to BD on the as prepared CuO-Bi2O3 catalysts. Based on these results and the literature, we propose an ethynylation reaction mechanism for CuO-based catalysts and provide a simple design strategy for highly efficient catalytic CuO-Bi2O3 systems, which has considerable potential for industrial applications.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


Author(s):  
Miriam González-Castaño ◽  
Bogdan Dorneanu ◽  
Harvey Arellano-García

RWGS reaction thermodynamics, mechanisms and kinetics. Process design and process intensification – from lab scale to industrial applications and CO2 value chains. Pathways for further improvement of catalytic systems, reactor and process design.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


2020 ◽  
Author(s):  
Diego Garay-Ruiz ◽  
Carles Bo

<div><div><div><p>The computational study of catalytic processes allows discovering really intricate and detailed reaction mechanisms that involve many species and transformations. This increasing level of detail can even result detrimental when drawing conclusions from the computed mechanism, as many co-existing reaction pathways can be in close com- petence. Here we present a reaction network-based implementation of the energy span model in the form of a computational code, gTOFfee, capable of dealing with any user-specified reaction network. This approach, compared to microkinetic simulations, enables a much easier and straightforward analysis of the performance of any catalytic reaction network. In this communication, we will go through the foundations and appli- cability of the underlying model, and will tackle the application to two relevant catalytic systems: homogeneous Co-mediated propene hydroformylation and heterogeneous CO2 hydrogenation over Cu(111).</p></div></div></div>


Author(s):  
Mirko Sgarbi ◽  
Valentina Colla ◽  
Gianluca Bioli

Computer vision is nowadays a key factor in many manufacturing processes. Among all possible applications like quality control, assembly verification and component tracking, the robot guidance for pick and place operations can assume an important role in increasing the automation level of production lines. While 3D vision systems are now emerging as valid solutions in bin-picking applications, where objects are randomly placed inside a box, 2D vision systems are widely and successfully adopted when objects are placed on a conveyor belt and the robot manipulator can grasp the object by exploiting only the 2D information. On the other hand, there are many real-world applications where the 3rd dimension is required by the picking system. For example, the objects can differ in their height or they can be manually placed in front of the camera without any constraint on the distance between the object and the camera itself. Although a 3D vision system could represent a possible solution, 3D systems are more complex, more expensive and less compact than 2D vision systems. This chapter describes a monocular system useful for picking applications. It can estimate the 3D position of a single marker attached to the target object assuming that the orientation of the object is approximately known.


2020 ◽  
Vol 16 ◽  
pp. 1924-1935
Author(s):  
Edgar Peris ◽  
Raúl Porcar ◽  
María Macia ◽  
Jesús Alcázar ◽  
Eduardo García-Verdugo ◽  
...  

The combination of supported ionic liquids and immobilized NHC–Pd–RuPhos led to active and more stable systems for the Negishi reaction under continuous flow conditions than those solely based on NHC–Pd–RuPhos. The fine tuning of the NHC–Pd catalyst and the SILLPs is a key factor for the optimization of the release and catch mechanism leading to a catalytic system easily recoverable and reusable for a large number of catalytic cycles enhancing the long-term catalytic performance.


2019 ◽  
Vol 35 (2) ◽  
pp. 854-862
Author(s):  
Ayoub Nadi ◽  
Marouane Melloul ◽  
Aicha Boukhriss ◽  
Elmostafa El-Fahime ◽  
Damien Boyer ◽  
...  

In the biotechnology field, nanoparticles with a strong magnetic moment can bring attractive and novel potentialities. They are detectable, manipulable, stimulable by a magnetic field and they could be applied as nano-tracers for medical imaging and nano-vectors for transporting therapeutic agents to a target. For our part, we applied Fe3O4 nanoparticles to immobilize bacteria of Moroccan strains in order to develop bacterial bioreactor. For this aim, we got through the synthesis and characterization of magnetite Fe3O4 nanoparticles by co-precipitation in basic medium. The obtained nanoparticles were encapsulated in silica by sol-gel process. The results of this step allowed us to use Fe3O4@SiO2 nanoparticles to immobilize Bacillus licheniformis by adsorption and separate it magnetically. The principle of this system gives us the opportunity to develop a bacterial bioreactor for industrial applications.


2016 ◽  
Vol 875 ◽  
pp. 24-44
Author(s):  
Ming Guo Ma ◽  
Shan Liu ◽  
Lian Hua Fu

CaCO3 has six polymorphs such as vaterite, aragonite, calcite, amorphous, crystalline monohydrate, and hexahydrate CaCO3. CaCO3 is a typical biomineral that is abundant in both organisms and nature and has important industrial applications. Cellulose could be used as feedstocks for producing biofuels, bio-based chemicals, and high value-added bio-based materials. In the past, more attentions have been paid to the synthesis and applications of CaCO3 and cellulose/CaCO3 nanocomposites due to its relating properties such as mechanical strength, biocompatibility, and biodegradation, and bioactivity, and potential applications including biomedical, antibacterial, and water pretreatment fields as functional materials. A variety of synthesis methods such as the hydrothermal/solvothermal method, biomimetic mineralization method, microwave-assisted method, (co-) precipitation method, and sonochemistry method, were employed to the preparation of CaCO3 and cellulose/CaCO3 nanocomposites. In this chapter, the recent development of CaCO3 and cellulose/CaCO3 nanocomposites has been reviewed. The synthesis, characterization, and biomedical applications of CaCO3 and cellulose/CaCO3 nanocomposites are summarized. The future developments of CaCO3 and cellulose/CaCO3 nanocomposites are also suggested.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 890
Author(s):  
Aihua Yi ◽  
Zhongmiao Liao ◽  
Wen Zhu ◽  
Zhisheng Zhu ◽  
Wenfang Li ◽  
...  

A coating was prepared on an AZ31B Mg alloy substrate via black plasma electrolytic oxidation (PEO). The colorant NH4VO3 was added to Na2SiO3–(NaPO3)6 electrolyte at different temperatures (5, 15, 25, and 35 °C). The influences of electrolyte temperature on the structures, compositions, and color values of black PEO coatings were studied by UV–Visible, XRD, XPS, Raman, and SEM techniques. The results showed that the relative content of V2O3 and V2O5 was the key factor affecting the coating color value. At higher temperatures, more NH3 escaped from the electrolyte and the NH3 quantity participating in the reaction decreased, resulting in a decrease of V2O3 content, an increase in color value, and a darker coating. In the PEO process, VO3− mainly reacted to form V2O5, and then, the generated V2O5 reacted with NH3 to form V2O3.


2015 ◽  
Vol 820 ◽  
pp. 335-340 ◽  
Author(s):  
Flávia R.O. Silva ◽  
Nelson B. de Lima ◽  
Deiby S. Gouveia ◽  
Nildemar A.M. Ferreira ◽  
Valter Ussui ◽  
...  

Hydroxyapatite (HA) doped with europium (HAEu) offers the advantage of making the hydroxyapatite a fluorescent biomarker, allowing their imaging through emissionin vivoandin vitrotests. Several authors had been based their studies about europium site occupation (CaI and CaII) in hydroxyapatite by the lanthanide ion luminescence, verifying the influence of the method of synthesis and concentration of the dopant ion. In this study HA nanoparticles doped with 1.4 mol% of trivalent europium were synthesized by co-precipitation method and thermal treated at different temperatures (600°C and 1200°C). A careful evaluation of the influence of the excitation wavelength of europium luminescence in the HAEu was performed and it has been verified that both the characteristics transitions of europium, at CaI and CaII sites, and the luminescent intensity are dependent on the excitation wavelength. The non-observance of this fact can lead to erroneous conclusions about the site occupation of europium in hydroxyapatites.


Sign in / Sign up

Export Citation Format

Share Document