scholarly journals SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1814
Author(s):  
Thankamani Karthika ◽  
Jeswin Joseph ◽  
V. R. Akshay Das ◽  
Niranjana Nair ◽  
Packirisamy Charulekha ◽  
...  

Recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 initiate virus infection by binding of their spike glycoprotein with the cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and enter into the host cells mainly via the clathrin-mediated endocytosis pathway. However, the internalization process post attachment with the receptor is not clear for both SARS-CoV-1 and -2. Understanding the cellular factor/s or pathways used by these CoVs for internalization might provide insights into viral pathogenesis, transmission, and development of novel therapeutics. Here, we demonstrated that the cytoplasmic tail of ACE2 is not essential for the entry of SARS-CoV-1 and -2 by using bioinformatics, mutational, confocal imaging, and pseudotyped SARS-CoVs infection studies. ACE2 cytoplasmic domain (cytACE2) contains a conserved internalization motif and eight putative phosphorylation sites. Complete cytoplasmic domain deleted ACE2 (∆cytACE2) was properly synthesized and presented on the surface of HEK293T and BHK21 cells like wtACE2. The SARS-CoVs S1 or RBD of spike protein binds and colocalizes with the receptors followed by internalization into the host cells. Moreover, pseudotyped SARS-CoVs entered into wtACE2- and ∆cytACE2-transfected cells but not into dipeptidyl peptidase 4 (DPP4)-expressing cells. Their entry was significantly inhibited by treatment with dynasore, a dynamin inhibitor, and NH4Cl, an endosomal acidification inhibitor. Furthermore, SARS-CoV antibodies and the soluble form of ACE2-treated pseudotyped SARS-CoVs were unable to enter the wtACE2 and ∆cytACE2-expressing cells. Altogether, our data show that ACE2 cytoplasmic domain signaling is not essential for the entry of SARS-CoV-1 and -2 and that SARS-CoVs entry might be mediated via known/unknown host factor/s.

2021 ◽  
Vol 28 ◽  
Author(s):  
Hao Lin ◽  
Srinivasulu Cherukupalli ◽  
Da Feng ◽  
Shenghua Gao ◽  
Dongwei Kang ◽  
...  

: COVID-19 is an infectious disease caused by SARS-CoV-2. The life cycle of SARS-CoV-2 includes the entry into the target cells, replicase translation, replicating and transcribing genomes, translating structural proteins, assembling and releasing new virions. Entering host cells is a crucial stage in the early life cycle of the virus, and blocking this stage can effectively prevent virus infection. SARS enters the target cells mediated by the interaction between the viral S protein and the target cell surface receptor angiotensin-converting enzyme 2 (ACE2), as well as the cleavage effect of type-II transmembrane serine protease (TMPRSS2) on the S protein. Therefore, the ACE2 receptor and TMPRSS2 are important targets for SARS-CoV-2 entry inhibitors. Herein, we provide a concise report/information on drugs with potential therapeutic value targeting virus-ACE2 or virus-TMPRSS2 interactions, to provide a reference for the design and discovery of potential entry inhibitors against SARS-CoV-2.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 437
Author(s):  
Dean Gilham ◽  
Audrey L. Smith ◽  
Li Fu ◽  
Dalia Y. Moore ◽  
Abenaya Muralidharan ◽  
...  

Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.


2021 ◽  
Vol 22 (16) ◽  
pp. 8963
Author(s):  
Satya Prakash Shukla ◽  
Kwang Bog Cho ◽  
Vineeta Rustagi ◽  
Xiang Gao ◽  
Xinping Fu ◽  
...  

Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans


Author(s):  
Mojtaba Bakhtiari ◽  
Kamyar Asadipooya

Abstract: A new coronavirus pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2], has been on the rise. This virus is fatal for broad groups of populations, including elderly, men, and patients with comorbidities among which obesity is a possible risk factor. The pathophysiologic connections between obesity/metainflammation and COVID-19 may be directly related to increasing soluble ACE2 (angiotensin-converting enzyme 2] levels which potentiates the viral entrance into the host cells, or indirectly related to dysregulation of immune system, microvascular injury and hypercoagulability. The SARS-CoV-2 S-glycoprotein interacts mainly with ACE2 or possibly DDP4 receptors to enter into the host cells. The host proteases, especially TMPRSS2 (transmembrane protease serine 2], support the fusion process and virus entry. While membranous ACE2 is considered a port of entry to the cell for SARS-CoV-2, it seems that soluble ACE2 retains its virus binding capability and enhances its entry into the cells. Interestingly, ACE2 on cell membrane may have protective roles by diminishing cytokine storm-related injuries to the organs. Applying medications that can reduce soluble ACE2 levels, antagonizing TMPRSS2 or blocking DDP4 can improve the outcomes of COVID-19. Metformin and statins through immunomodulatory activities, Orlistat by reducing viral replication, and thiazolidinediones by upregulating ACE2 expression have potential beneficial effects against COVID-19. However, the combination of dipeptidyl peptidase-4 (DDP4] inhibitors and spironolactone/eplerenone seems to be more effective by reducing soluble ACE2 level, antagonizing TMPRSS2, maintaining ACE2 on cell membrane and reducing risk of viral entry into the cells.


2020 ◽  
Author(s):  
Mahdi Ghorbani ◽  
Bernard R. Brooks ◽  
Jeffery B. Klauda

AbstractThe novel coronavirus (nCOV-2019) outbreak has put the world on edge, causing millions of cases and hundreds of thousands of deaths all around the world, as of June 2020, let alone the societal and economic impacts of the crisis. The spike protein of nCOV-2019 resides on the virion’s surface mediating coronavirus entry into host cells by binding its receptor binding domain (RBD) to the host cell surface receptor protein, angiotensin converter enzyme (ACE2). Our goal is to provide a detailed structural mechanism of how nCOV-2019 recognizes and establishes contacts with ACE2 and its difference with an earlier coronavirus SARS-COV in 2002 via extensive molecular dynamics (MD) simulations. Numerous mutations have been identified in the RBD of nCOV-2019 strains isolated from humans in different parts of the world. In this study, we investigated the effect of these mutations as well as other Ala-scanning mutations on the stability of RBD/ACE2 complex. It is found that most of the naturally-occurring mutations to the RBD either strengthen or have the same binding affinity to ACE2 as the wild-type nCOV-2019. This may have implications for high human-to-human transmission of coronavirus in regions where these mutations have been found as well as any vaccine design endeavors since these mutations could act as antibody escape mutants. Furthermore, in-silico Ala-scanning and long-timescale MD simulations, highlight the crucial role of the residues at the interface of RBD and ACE2 that may be used as potential pharmacophores for any drug development endeavors. From an evolutional perspective, this study also identifies how the virus has evolved from its predecessor SARS-COV and how it could further evolve to become more infectious.


2021 ◽  
Author(s):  
Maria Dolores Rivas ◽  
Jose Maria Rafael Saponi-Cortes ◽  
Jose Zamorano

AbstractCOVID-19 currently represents a major public health problem. Multiple efforts are being performed to control this disease. Vaccinations are already in progress. However, no effective treatments have been found so far. The disease is caused by the SARS-CoV-2 coronavirus that through the Spike protein interacts with its cell surface receptor ACE2 to enter into the host cells. Therefore, compounds able to block this interaction may help to stop disease progression. In this study, we have analyzed the effect of compounds reported to interact and modify the activity of ACE2 on the binding of the Spike protein. Among the compounds tested, we found that hydroxyzine could inhibit the binding of the receptor-binding domain of Spike protein to ACE2 in a qualitative in vitro assay. This finding supports the reported clinical data showing the benefits of hydroxyzine on COVID-19 patients, raising the need for further investigation into its effectiveness in the treatment of COVID-19 given its well-characterized medical properties and affordable cost.


1998 ◽  
Vol 72 (1) ◽  
pp. 783-788 ◽  
Author(s):  
Daniel Gonzalez-Dunia ◽  
Beatrice Cubitt ◽  
Juan Carlos de la Torre

ABSTRACT We have investigated the entry pathway of Borna disease virus (BDV). Virus entry was assessed by detecting early viral replication and transcription. Lysosomotropic agents (ammonium chloride, chloroquine, and amantadine), as well as energy depletion, prevented BDV infection, indicating that BDV enters host cells by endocytosis and requires an acidic intracellular compartment to allow membrane fusion and initiate infection. Consistent with this hypothesis, we observed that BDV-infected cells form extensive syncytia upon low-pH treatment. Entry of enveloped viruses into animal cells usually requires the membrane-fusing activity of viral surface glycoproteins (GPs). BDV GP is expressed as two products of 84 and 43 kDa (GP-84 and GP-43, respectively). We show here that only GP-43 is present at the surface of BDV-infected cells and therefore is likely the viral polypeptide responsible for triggering fusion events. We also present evidence that GP-43, which corresponds to the C terminus of GP-84, is generated by cleavage of GP-84 by the cellular protease furin. Hence, we propose that BDV GP-84 is involved in attachment to the cell surface receptor whereas its furin-cleaved product, GP-43, is involved in pH-dependent fusion after internalization of the virion by endocytosis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1109-1109
Author(s):  
Nataly Podolnikova ◽  
Arnat Balabiyev ◽  
Tatiana P. Ugarova

Abstract CD47 is a cell surface receptor, which is expressed by virtually all cells in the body, including immune cells. CD47 has originally been identified as an integrin-associated protein (IAP) and shown to associate with several integrins that belong to the β1 and β3 subfamilies. In addition, association of CD47 with a member of the β2 subfamily, integrin αLβ2, has also been reported. In neutrophils, CD47 mediates a number of integrin αvβ3-dependent functions, including adhesion, migration and phagocytosis. Surprisingly, the association of CD47 with integrin αMβ2 (Mac-1, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, has not been documented. Furthermore, while the major focus of recent studies was the mechanism by which CD47 on various host cells prevents phagocytosis by macrophages, the question as to how CD47 expressed on the surface of macrophages influences the responses of these cells has not been addressed. In the present study, we demonstrated that an association of CD47 with Mac-1 regulates Mac-1-dependent macrophage functions. In particular, adhesion of macrophages isolated from CD47-/- mice to fibrinogen and ICAM-1, the established physiological ligands of Mac-1 was significantly decreased compared to wild-type counterparts. In addition, spreading of CD47-deficient macrophages was decreased by four- and two-fold on fibrinogen and ICAM-1, respectively. Compared to wild-type macrophages, migration of CD47-deficient macrophages to the Mac-1 ligand, cathelicidin peptide LL-37 was significantly reduced. The lack of CD47 on the surface of macrophages impaired their ability to fuse in the presence of IL-4. Finally, the deficiency of CD47 also reduced phagocytosis of opsonized latex beads, a process fully dependent on Mac-1. The functional association of CD47 with Mac-1 implied that similar to other integrins, Mac-1 might form a complex with CD47. Indeed, co-immunoprecipitation experiments using peritoneal mouse macrophages, the IC21 murine macrophage cell line and Mac-1-expressing HEK293 cells revealed that Mac-1 forms a complex with CD47. The cis interaction between Mac-1 and CD47 was also detected using the proximity ligation assay. Together, these results indicate that Mac-1 forms a lateral complex with CD47, which regulates important macrophage functions. Studies to determine the structural requirements for the physical interaction between Mac-1 and CD47 are in progress. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 75 (17) ◽  
pp. 7818-7827 ◽  
Author(s):  
José de Jesús Martı́nez-Barragán ◽  
Rosa M. del Angel

ABSTRACT Dengue virus infects target cells by attaching to a cell surface receptor through the envelope (E) glycoprotein, located on the surface of the viral membrane. On Vero and BHK cells, heparan sulfate (HS) moieties of proteoglycans are the receptors for dengue virus; however, additional proteins have also been described as putative dengue virus receptors on C6/36, HL60, and BM cells. HS can also act as a receptor for other types of viruses or as an attachment molecule for viruses that require additional host cell molecules to allow viral penetration. In this study we searched for molecules other than HS that could participate in dengue virus infection of Vero cells. Labeled dengue 4 virus bound with high affinity to two molecules of 74 and 44 kDa. Binding of dengue virus to the 74-kDa molecule was susceptible to protease and sodium periodate treatment and resistant to heparinase treatments. Lectins such as concanavalin A and wheat germ agglutinin prevented dengue virus binding to both the 74- and the 44-kDa protein in overlay assays, while phytohemagglutinin P did not affect binding, suggesting that carbohydrate residues (α-mannose orN-acetylglucosamine) are important in virus binding to host cells. Protease susceptibility, biotin labeling, and immunofluorescence with a polyclonal antibody raised against the 74-kDa protein consistently identified the protein on the surfaces of Vero cells. Moreover, the antibody against the 74-kDa protein was able to inhibit dengue virus infection. These data suggest that HS might serve as a primary receptor, probably concentrating virus particles on the surfaces of Vero cells, and then other molecules, such as the 74-kDa protein, might participate as coreceptors in viral penetration. The 74-kDa protein possibly constitutes part of a putative receptor complex for dengue virus infection of Vero cells.


1997 ◽  
Vol 78 (02) ◽  
pp. 897-901 ◽  
Author(s):  
L Daviet ◽  
E Malvoisin ◽  
T F Wild ◽  
J L McGregor

SummaryCD36 is a cell surface receptor that has been shown to interact with a large variety of ligands including thrombospondin, collagen, Plasmodium falciparum-infected erythrocytes, apoptotic neutrophils, modified low density lipoproteins, anionic phospholipids and long chain fatty acids. A number of these CD36 ligands elicit the transduction of intracellular signals involved in cell activation and internalization of bound ligands. The engagement of CD36 possibly activates three cytosolic protein tyrosine kinases that are presumably associated with the C- terminal cytoplasmic tail of CD36. However, the mechanisms by which CD36 functions in ligand binding and signal transduction are poorly understood. In the present study, a membrane-bound and a truncated soluble form of CD36 were expressed in HeLa cells and analyzed by velocity-gradient centrifugation and chemical cross-linking. We show that membrane CD36 exists predominantly as a monomer but a homo- dimeric form is also found. In contrast, soluble CD36 sedimented in sucrose gradient as a monomer. However, when incubated with thrombospondin, the membrane form of CD36 predominantly sedimented as a dimer whereas soluble CD36 was monomeric. This study shows that thrombospondin has the ability to induce dimerization of CD36 and may be implicated in the signal transduction capacity of this adhesion molecule.


Sign in / Sign up

Export Citation Format

Share Document