scholarly journals Systems Biology Applied to the Study of Papaya Fruit Ripening: The Influence of Ethylene on Pulp Softening

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2339
Author(s):  
Caroline Giacomelli Soares ◽  
Samira Bernardino Ramos do Prado ◽  
Sónia C. S. Andrade ◽  
João Paulo Fabi

Papaya is a fleshy fruit that undergoes fast ethylene-induced modifications. The fruit becomes edible, but the fast pulp softening is the main factor that limits the post-harvest period. Papaya fast pulp softening occurs due to cell wall disassembling coordinated by ethylene triggering that massively expresses pectinases. In this work, RNA-seq analysis of ethylene-treated and non-treated papayas enabled a wide transcriptome overview that indicated the role of ethylene during ripening at the gene expression level. Several families of transcription factors (AP2/ERF, NAC, and MADS-box) were differentially expressed. ACO, ACS, and SAM-Mtase genes were upregulated, indicating a high rate of ethylene biosynthesis after ethylene treatment. The correlation among gene expression and physiological data demonstrated ethylene treatment can indeed simulate ripening, and regulation of changes in fruit color, aroma, and flavor could be attributed to the coordinated expression of several related genes. Especially about pulp firmness, the identification of 157 expressed genes related to cell wall metabolism demonstrated that pulp softening is accomplished by a coordinated action of several different cell wall-related enzymes. The mechanism is different from other commercially important fruits, such as strawberry, tomato, kiwifruit, and apple. The observed behavior of this new transcriptomic data confirms ethylene triggering is the main event that elicits fast pulp softening in papayas.

2016 ◽  
Vol 43 (5) ◽  
pp. 413 ◽  
Author(s):  
Juanxu Liu ◽  
Ji Zhao ◽  
Zhina Xiao ◽  
Xinlei Chang ◽  
Guoju Chen ◽  
...  

The ethylene biosynthesis pathway controls flower senescence. Previous studies have shown that Arabidopsis ETHYLENE-OVERPRODUCER1 (ETO1) interacts specifically with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases (ACSs), the rate-limiting enzymes of ethylene biosynthesis. The ethylene biosynthesis pathway controls flower senescence in petunias (Petunia hybrida Juss.). However, the role of ETO1-like genes (EOLs) during flower senescence has not been investigated. Here, two full-length petunia EOL cDNAs, PhEOL1 and PhEOL2, were isolated. RT–PCR assays indicated that the expression of PhEOL1 and PhEOL2 increased after exogenous ethylene treatment. The VIGS-mediated silencing of PhEOL1 accelerated flower senescence and produced more ethylene than the control condition, whereas the silencing of PhEOL2 did not. Notably, the effects caused by PhEOL1 suppression were not enhanced by PhEOL2 suppression in corollas. In addition, the expression of two petunia type 2 PhACS genes increased during flower senescence and after ethylene treatment. A yeast two-hybrid assay showed that PhEOL1 interacts with both PhACS2 and PhACS3. It is possible that PhEOL1 is involved in flower senescence by interacting with type 2 PhACSs in petunias.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 373
Author(s):  
H. M. Prathibhani C. Kumarihami ◽  
Jin Gook Kim ◽  
Yun-Hee Kim ◽  
Mockhee Lee ◽  
Young-Suk Lee ◽  
...  

The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of ‘Garmrok’ kiwifruit during postharvest cold storage (0 °C; RH 90–95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of ‘Garmrok’ kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.


2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


Author(s):  
Elham Abbasi ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Alireza Salimi Chirani ◽  
Abdollah Ardebili ◽  
...  

AbstractA major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS – PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 354-362 ◽  
Author(s):  
K. Matsuda ◽  
E. Araki ◽  
R. Yoshimura ◽  
K. Tsuruzoe ◽  
N. Furukawa ◽  
...  

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 967-971
Author(s):  
Poonam Thakre ◽  
Waqar M. Naqvi ◽  
Trupti Deshmukh ◽  
Nikhil Ingole ◽  
Sourabh Deshmukh

The emergence in China of 2019 of severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) previously provisionally names 2019-nCoV disease (COVID19) caused major global outbreak and is a major public health problem. On 30 January 2020, the WHO declared COVID19 to be the sixth international public health emergency. This present pandemic has engrossed the globe with a high rate of mortality. As a front line practitioner, physiotherapists are expected to be getting in direct contact with patients infected with the virus. That’s why it is necessary for understanding the many aspects of their role in the identification, contains, reduces and treats the symptoms of this disease. The main presentation is the involvement of respiratory system with symptoms like fever, cough, sore throat, sneezing and characteristics of pneumonia leads to ARDS(Acute respiratory distress syndrome) also land up in multiorgan dysfunction syndrome. This text describes and suggests physiotherapy management of acute COVID-19 patients. It also includes recommendations and guidelines for physiotherapy planning and management. It also covers the guidelines regarding personal care and equipment used for treatment which can be used in the treatment of acute adult patients with suspected or confirmed COVID-19.


2002 ◽  
Vol 22 (1-2) ◽  
pp. 209-222 ◽  
Author(s):  
Bénédicte Flambard

Sign in / Sign up

Export Citation Format

Share Document