scholarly journals Myxospermy Evolution in Brassicaceae: A Highly Complex and Diverse Trait with Arabidopsis as an Uncommon Model

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2470
Author(s):  
Sébastien Viudes ◽  
Christophe Dunand ◽  
Vincent Burlat

The ability to extrude mucilage upon seed imbibition (myxospermy) occurs in several Angiosperm taxonomic groups, but its ancestral nature or evolutionary convergence origin remains misunderstood. We investigated seed mucilage evolution in the Brassicaceae family with comparison to the knowledge accumulated in Arabidopsis thaliana. The myxospermy occurrence was evaluated in 27 Brassicaceae species. Phenotyping included mucilage secretory cell morphology and topochemistry to highlight subtle myxospermy traits. In parallel, computational biology was driven on the one hundred genes constituting the so-called A. thaliana mucilage secretory cell toolbox to confront their sequence conservation to the observed phenotypes. Mucilage secretory cells show high morphology diversity; the three studied Arabidopsis species had a specific extrusion modality compared to the other studied Brassicaceae species. Orthologous genes from the A. thaliana mucilage secretory cell toolbox were mostly found in all studied species without correlation with the occurrence of myxospermy or even more sub-cellular traits. Seed mucilage may be an ancestral feature of the Brassicaceae family. It consists of highly diverse subtle traits, probably underlined by several genes not yet characterized in A. thaliana or by species-specific genes. Therefore, A. thaliana is probably not a sufficient reference for future myxospermy evo–devo studies.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Fabienne Archer ◽  
Alexandra Bobet-Erny ◽  
Maryline Gomes

AbstractThe number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


2017 ◽  
Author(s):  
Maria A Prostova ◽  
Andrei A Deviatkin ◽  
Irina O Tcelykh ◽  
Alexander N Lukashev ◽  
Anatoly P Gmyl

Background. Enteroviruses are small non-enveloped viruses with (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features low fidelity, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods.To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. Results.A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y=U/C, N=any nucleotide, H=A/C/U). The putative RNA-binding tripeptide 154-156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. Discussion. Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.


2017 ◽  
Author(s):  
Maria A Prostova ◽  
Andrei A Deviatkin ◽  
Irina O Tcelykh ◽  
Alexander N Lukashev ◽  
Anatoly P Gmyl

Background. Enteroviruses are small non-enveloped viruses with (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features low fidelity, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods.To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. Results.A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y=U/C, N=any nucleotide, H=A/C/U). The putative RNA-binding tripeptide 154-156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. Discussion. Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 372
Author(s):  
Feyisara Eyiwumi Oni ◽  
Qassim Esmaeel ◽  
Joseph Tobias Onyeka ◽  
Rasheed Adeleke ◽  
Cedric Jacquard ◽  
...  

Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host–microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy–molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant–pathogen interactions and in the enhancement of plant innate immunity.


Botanica ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 124-131
Author(s):  
Ieva Rūrāne ◽  
Pēteris Evarts-Bunders ◽  
Māris Nitcis

Abstract Rūrāne I., Evarts-Bunders P., Nitcis M., 2018: Distribution trends of some species of the Brassicaceae family in Latvia. - Botanica, 24(2): 124-131. The aim of this paper was to clarify and analyse the distribution trends of some Brassicaceae species (Bunias orientalis, Sisymbrium volgense, Barbarea arcuata, Draba nemorosa and Camelina alyssum) in Latvia. Field studies and the herbarium material analyses were carried out. The distribution trends were analysed by comparing all selected species in three time periods: by 1940, from 1941 to 1990, and from 1991 to the present. The study shows that the distribution of Brassicaceae species such as Bunias orientalis, Sisymbrium volgense, Barbarea arcuata and Draba nemorosa has increased significantly in Latvia during the time period from 1991 to the present, and these species are mostly found on railway, ruderal areas and roadsides, which are important habitats for species distribution. The occurrence of Camelina alyssum has considerably declined or perhaps the species has even disappeared from the flora of Latvia, which has been affected greatly by changes in the cultivation of agricultural crops as well as in agricultural land management.


2021 ◽  
Vol 4 ◽  
Author(s):  
Christina Wiebe ◽  
Petra Nowak ◽  
Hendrik Schubert

Assessing the biodiversity of an ecosystem plays a major role in ecosystem management. However, proper determination on species-level is often tricky when morphological features are scarce and especially rare species require huge sampling efforts to be detected in the aquatic realm. As an alternative to conventional methods, environmental samples can be examined via the eDNA method, allowing for large-scale integration as well as taxa resolution independent from expression of morphological characters. However, to apply this technique genetic markers that are specific to a species or at least a genus are required. Such markers until now have been successfully developed only for a few well studied taxonomic groups like, e.g., fishes and amphibians, but are still missing for others, especially plants and algae (e.g. Bista et al. 2017). This project focusses on the development of species-specific markers for the macrophytic green algae Tolypella canadensis (Characeae, Charophyta), a rare alga preferring deep water and known so far mainly from remote places. Tolypella canadensis is a circumpolar species and prefers oligotrophic lakes, where it grows in depths up to 13 m (Langangen 2002; Romanov and Kopyrina 2016). In addition, proper determination of Tolypella-species is a field of a few specialists, further complicating monitoring or even detection of this rare species. The design of the species-specific primers was based on reference nucleotide sequences of the chloroplast genes rbcL, psbC and atpB and of the ribosomal internal transcribed spacer regions ITS1 and ITS2, obtained from GenBank (Perez et al. 2017). To determine the specificity of the newly designed primers, DNA isolates obtained from T. canadensis specimens collected from the Torneträsk (Sweden, 2018) and other charophyte species were prepared in different proportions. The sensitivity of the primers was experimentally assayed by using serial dilutions of T. canadensis DNA. Additionally, a mock test comprised of a sample with the DNA of several charophyte species was conducted and finally, the markers were tested on environmental samples from the Torneträsk. Tolypella canadensis-specific primers of the ITS2 region yielded positive PCR amplifications of one single band when T. canadensis was present in a sample. Cross-amplification was not found during the mock test; other charophyte species did not yield positive amplification. The eDNA samples from the Torneträsk validated the performance of the ITS2 marker. The T. canadensis-specific marker designed in this project was proven to be sensitive and accurate. It could be recommended as a useful tool to detect the presence of T. canadensis DNA, even at low concentration and in complex samples containing other charophyte species.


1991 ◽  
Vol 69 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Douglas W. Whitman ◽  
Johan P. J. Billen ◽  
David Alsop ◽  
Murray S. Blum

In the lubber grasshopper Romalea guttata, the respiratory system produces, stores, and delivers a phenolic defensive secretion. The exudate is secreted by a glandular epithelium surrounding the metathoracic spiracular tracheal trunks. Embedded in the glandular tissue are multiple secretory units, each comprised of a basal secretory cell and an apical duct cell. Secretory cells have numerous mitochondria, a tubular, smooth endoplasmic reticulum, well-developed Golgi bodies, and a microvillilined vesicle thought to transfer secretion to the intracellular cuticular duct of a duct cell. Ducts empty into the metathoracic tracheal lumina where the exudate is stored behind the closed metathoracic spiracle. Tactile stimulation elicits secretion discharge, which begins when all spiracles except the metathoracic pair are closed and the abdomen is compressed. Increased hemostatic and pneumatic pressures drive air and secretion out of the spiracle with an audible hiss. Both metathoracic spiracles discharge simultaneously. The secretion erupts first as a dispersant spray, then as an adherent froth, and finally assumes the form of a slowly evaporating repellent droplet. Discharge force and number vary with eliciting stimuli, volume of stored secretion, and age, disturbance state, and temperature of the insect. Molting grasshoppers are unable to discharge because the stored exudate is lost with the shed cuticle. The advantages and limitations of a tracheal defensive system are discussed.


1997 ◽  
Vol 1997 ◽  
pp. 130-130
Author(s):  
M.G. Goodwill ◽  
N.S. Jessop ◽  
J.D. Oldham

Milk production depends on both the number and activity of secretory cells within the mammary gland. Our earlier work showed the sensitivity of lactational performance to changes in diet during lactation (Goodwill et al, 1996). This study investigated the influence of protein undernutrition and re-alimentation on secretory cell proliferation and death in the mammary gland of rats during early lactation.


1999 ◽  
Vol 1999 ◽  
pp. 197-197 ◽  
Author(s):  
G. E. Pollott

Most functions used to describe the lactation curve of dairy animals are empirical in approach and result in parameters with little or no biological meaning. A new model for describing lactation based on the biology of the pregnant and lactating animal is proposed and compared to several empirical models (Wood, 1967; Grossman and Koops, 1988; Morant and Gnanasakthy, 1989).Lactation is thought of as the balance between an increase in secretory cell numbers (NSCP) and their later decline (NSCD). The difference between them is the number of active secretory cells, each of which secretes milk at a particular rate (S kg/cell/day). Thus daily milk yield (MY) = (NSCP – NSCD) x S.


2020 ◽  
Vol 48 (5) ◽  
pp. 2544-2563 ◽  
Author(s):  
Pilar Menendez-Gil ◽  
Carlos J Caballero ◽  
Arancha Catalan-Moreno ◽  
Naiara Irurzun ◽  
Inigo Barrio-Hernandez ◽  
...  

Abstract The evolution of gene expression regulation has contributed to species differentiation. The 3′ untranslated regions (3′UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3′UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3′UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3′UTR of orthologous genes and demonstrated that 3′UTR sequence variations affect protein production. This suggested that species-specific functional 3′UTRs might be specifically selected during evolution. 3′UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3′UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3′UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3′UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.


Sign in / Sign up

Export Citation Format

Share Document