scholarly journals PI3Kγ Mediates Microglial Proliferation and Cell Viability via ROS

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2534
Author(s):  
Caroline Schmidt ◽  
Nadine Schneble-Löhnert ◽  
Trim Lajqi ◽  
Reinhard Wetzker ◽  
Jörg P. Müller ◽  
...  

(1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation.

2004 ◽  
Vol 24 (3) ◽  
pp. 966-975 ◽  
Author(s):  
Lazaros C. Foukas ◽  
Caroline A. Beeton ◽  
Jorgen Jensen ◽  
Wayne A. Phillips ◽  
Peter R. Shepherd

ABSTRACT One potentially important mechanism for regulating class Ia phosphoinositide 3-kinase (PI 3-kinase) activity is autophosphorylation of the p85α adapter subunit on Ser608 by the intrinsic protein kinase activity of the p110 catalytic subunit, as this downregulates the lipid kinase activity in vitro. Here we investigate whether this phosphorylation can occur in vivo. We find that p110α phosphorylates p85α Ser608 in vivo with significant stoichiometry. However, p110β is far less efficient at phosphorylating p85α Ser608, identifying a potential difference in the mechanisms by which these two isoforms are regulated. The p85α Ser608 phosphorylation was increased by treatment with insulin, platelet-derived growth factor, and the phosphatase inhibitor okadaic acid. The functional effects of this phosphorylation are highlighted by mutation of Ser608, which results in reduced lipid kinase activity and reduced association of the p110α catalytic subunit with p85α. The importance of this phosphorylation was further highlighted by the finding that autophosphorylation on Ser608 was impaired, while lipid kinase activity was increased, in a p85α mutant recently discovered in human tumors. These results provide the first evidence that phosphorylation of Ser608 plays a role as a shutoff switch in growth factor signaling and contributes to the differences in functional properties of different PI 3-kinase isoforms in vivo.


2012 ◽  
Vol 13 (1) ◽  
pp. 30 ◽  
Author(s):  
Meredith J Layton ◽  
Mirette Saad ◽  
Nicole L Church ◽  
Richard B Pearson ◽  
Christina A Mitchell ◽  
...  

2000 ◽  
Vol 350 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Carolyn A. BEETON ◽  
Edwin M. CHANCE ◽  
Lazaros C. FOUKAS ◽  
Peter R. SHEPHERD

Growth factors regulate a wide range of cellular processes via activation of the class-Ia phosphoinositide 3-kinases (PI 3-kinases). We directly compared kinetic properties of lipid- and protein-kinase activities of the widely expressed p110α and p110β isoforms. The lipid-kinase activity did not display Michaelis–Menten kinetics but modelling the kinetic data demonstrated that p110α has a higher Vmax and a 25-fold higher Km for PtdIns than p110β. A similar situation occurs with PtdIns(4,5)P2, because at low concentration of PtdIns(4,5)P2 p110β is a better PtdIns(4,5)P2 kinase than p110α, although this is reversed at high concentrations. These differences suggest different functional roles and we hypothesize that p110β functions better in areas of membranes containing low levels of substrate whereas p110α would work best in areas of high substrate density such as membrane lipid rafts. We also compared protein-kinase activities. We found that p110β phosphorylated p85 to a lower degree than did p110α. We used a novel peptide-based assay to compare the kinetics of the protein-kinase activities of p110α and p110β. These studies revealed that, like the lipid-kinase activity, the protein-kinase activity of p110α has a higher Km (550µM) than p110β (Km 8µM). Similarly, the relative Vmax towards peptide substrate of p110α was three times higher than that of p110β. This implies differences in the rates of regulatory autophosphorylation in vivo, which are likely to mean differential regulation of the lipid-kinase activities of p110α and p110β in vivo.


2020 ◽  
Vol 21 (3) ◽  
pp. 735
Author(s):  
Jerneja Tomsic ◽  
Arianna Smorlesi ◽  
Enrico Caserta ◽  
Anna Maria Giuliodori ◽  
Cynthia L. Pon ◽  
...  

The conserved Histidine 301 in switch II of Geobacillus stearothermophilus IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons. All mutants promoted 30S initiation complex (30S IC) formation with wild type (wt) efficiency but upon 30S IC association with the 50S subunit, the fMet-tRNA reacted with puromycin to different extents depending upon the IF2 mutant present in the complex (wtIF2 ≥ to IF2H301Q > IF2H301R >>> IF2H301S, IF2H301L and IF2H301Y) whereas only fMet-tRNA 30S-bound with IF2H301Q retained some ability to form initiation dipeptide fMet-Phe. Unlike wtIF2, all mutants, regardless of their ability to hydrolyze GTP, displayed higher affinity for the ribosome and failed to dissociate from the ribosomes upon 50S docking to 30S IC. We conclude that different amino acids substitutions of His301 cause different structural alterations of the factor, resulting in disparate phenotypes with no direct correlation existing between GTPase inactivation and IF2 failure to dissociate from ribosomes.


2007 ◽  
Vol 27 (23) ◽  
pp. 8049-8064 ◽  
Author(s):  
Michael J. Muskus ◽  
Fabian Preuss ◽  
Jin-Yuan Fan ◽  
Edward S. Bjes ◽  
Jeffrey L. Price

ABSTRACT A mutation (K38R) which specifically eliminates kinase activity was created in the Drosophila melanogaster ckI gene (doubletime [dbt]). In vitro, DBT protein carrying the K38R mutation (DBTK/R) interacted with Period protein (PER) but lacked kinase activity. In cell culture and in flies, DBTK/R antagonized the phosphorylation and degradation of PER, and it damped the oscillation of PER in vivo. Overexpression of short-period, long-period, or wild-type DBT in flies produced the same circadian periods produced by the corresponding alleles of the endogenous gene. These mutations therefore dictate an altered “set point” for period length that is not altered by overexpression. Overexpression of the DBTK/R produced effects proportional to the titration of endogenous DBT, with long circadian periods at lower expression levels and arrhythmicity at higher levels. This first analysis of adult flies with a virtual lack of DBT activity demonstrates that DBT's kinase activity is necessary for normal circadian rhythms and that a general reduction of DBT kinase activity does not produce short periods.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 780-780
Author(s):  
Andrew G. Muntean ◽  
Liyan Pang ◽  
Mortimer Poncz ◽  
Steve Dowdy ◽  
Gerd Blobel ◽  
...  

Abstract Megakaryocytes, which fragment to give rise to platelets, undergo a unique form of cell cycle, termed endomitosis, to become polyploid and terminally differentiate. During this process, cells transverse the cell cycle but the late stages of mitosis are bypassed to lead to accumulation of DNA up to 128N. While the mechanisms of polyploidization in megakaryocytes are poorly understood, a few cell cycle regulators, such as cyclin D3, have been implicated in this process. Hematopoietic transcription factors, including GATA-1 and RUNX1 are also essential for polyploidization, as both GATA1-deficient and RUNX1-null megakaryocytes undergo fewer rounds of endomitosis. Interestingly, GATA-1 deficient megakaryocytes are also smaller than their wild-type counterparts. However, the link between transcription factors and the growth and polyploidization of megakaryocytes has not been established. In our studies to identify key downstream targets of GATA-1 in the megakaryocyte lineage, we discovered that the cell cycle regulators cyclin D1 and p16 were aberrantly expressed in the absence of GATA-1: cyclin D1 expression was reduced nearly 10-fold, while that of p16ink4a was increased 10-fold. Luciferase reporter assays revealed that GATA-1, but not the leukemic isoform GATA-1s, promotes cyclinD1 expression. Consistent with these observations, megakaryocytes that express GATA-1s in place of full-length GATA-1 are smaller than their wild-type counterparts. Chromatin immunoprecipitation studies revealed that GATA-1 is bound to the cyclin D1 promoter in vivo, in primary fetal liver derived megakaryocytes. In contrast, GATA-1 is not associated with the cyclin D1 promoter in erythroid cells, which do not become polyploid. Thus, cyclin D1 is a bona fide GATA-1 target gene in megakaryocytes. To investigate whether restoration of cyclin D1 expression could rescue the polyploidization defect in GATA-1 deficient cells, we infected fetal liver progenitors isolated from GATA-1 knock-down mice with retroviruses harboring the cyclin D1 cDNA (and GFP via an IRES element) or GFP alone. Surprisingly, expression of cyclin D1 did not increase the extent of polyploidization of the GATA-1 deficient megakaryocytes. However, co-overexpression of cyclin D1 and Cdk4 resulted in a dramatic increase in polyploidization. Consistent with the model that cyclinD:Cdk4/6 also regulates cellular metabolism, we observed that the size of the doubly infected cells was also significantly increased. Finally, in support of our model that cyclin D:Cdk4/6 kinase activity is essential for endomitosis, we discovered that introduction of wild-type p16 TAT fusion protein, but not a mutant that fails to interact with Cdk4/6, significantly blocked polyploidization of primary fetal liver derived megakaryocytes. Taken together, our data reveal that the process of endomitosis and cell growth relies heavily on cyclinD:Cdk4/6 kinase activity and that the maturation defects in GATA-1 deficient megakaryocytes are due, in part, to reduced Cyclin D1 and increase p16 expression.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 512-512
Author(s):  
Anupriya Agarwal ◽  
Ryan J Meckenzie ◽  
Thomas O'Hare ◽  
Kavin B Vasudevan ◽  
Dorian H LaTocha ◽  
...  

Abstract Abstract 512 Background: BCR-ABL promotes cell cycle progression by interfering with the regulatory functions of p27, a cyclin dependent kinase (Cdk) inhibitor and tumor suppressor. We have previously shown that BCR-ABL kinase activity promotes degradation of nuclear p27 (Agarwal, A. et al. Blood 2008). Additionally, in primary CML cells, p27 is mislocalized to the cytoplasm, thereby relieving Cdks from p27 inhibition. Results from studies of solid tumors show that cytoplasmic p27 can actively contribute to oncogenesis, raising the question of whether cytoplasmic p27 in CML cells may actively promote leukemogenesis rather than merely compromise Cdk inhibition. We hypothesize that BCR-ABL disrupts p27 function in a dual manner by reducing nuclear p27, where p27 normally serves as a tumor suppressor, and by increasing cytoplasmic p27, where it might have oncogenic activity. Experimental Approach and Results: Immunoblotting of nuclear and cytoplasmic lysates of CD34+ cells from 11 CML patients revealed that p27 localization is predominantly cytoplasmic in the majority of patients (10/11; 91%) irrespective of disease phase, while p27 was mostly nuclear in normal controls. Similar results were obtained by immunofluorescence microscopy. Imatinib treatment increased nuclear p27 suggesting that nuclear p27 levels are regulated by BCR-ABL kinase activity. However, imatinib does not alter cytoplasmic p27 levels, suggesting that cytoplasmic mislocalization of p27 is a kinase-independent effect of BCR-ABL. Kinase-independent regulation of cytoplasmic p27 localization was also tested by immunofluorescence microscopy of p27−/− MEFs engineered to express active or kinase-dead BCR-ABL in combination with wild-type p27. In these cells cytoplasmic p27 abundance was increased both by kinase-active or kinase-dead BCR-ABL as compared to the vector control. To interrogate the role of p27 in vivo we retrovirally transduced p27+/+ or p27−/− bone marrow with BCR-ABL-GFP retrovirus and sorted Lin-/c-Kit+/Sca-I+ cells by FACS, allowing for injection of exactly matched numbers of BCR-ABL-expressing GFP+ cells (5000/animal). Median survival was significantly reduced for recipients of p27−/− marrow as compared to p27+/+ controls (34 days vs. 93 days p<0.0001). Recipients of p27−/− marrow also exhibited significantly increased white blood cell (4.5-fold) and platelet counts (3.9-fold) as well as spleen size (6-fold) and liver size (1.6-fold). Accordingly, there was more pronounced leukemic infiltration of myeloid precursors on histopathology as compared to controls. An in vivo competition experiment performed by injecting equal numbers of BCR-ABL-transduced p27−/− and p27+/+ marrow cells in congenic recipients resulted in leukemias in recipient mice (N=8) that were derived exclusively from p27−/− cells. In total, these results suggest that the net function of p27 in CML is tumor suppressive. To functionally dissect the role of nuclear and cytoplasmic p27, we used p27T187A transgenic mice (in which nuclear p27 degradation is reduced) and p27S10A mice (in which p27 export to the cytoplasm is reduced resulting in predominantly nuclear p27). Mice of matched genetic background were used as p27WT controls in CML retroviral transduction/transplantation experiments. In both cases, survival was prolonged compared to controls: 25 vs. 21 days for p27T187A (p=0.05) and 32 vs. 23 days for p27S10A (p=0.01). This suggests that stabilization of nuclear p27 (p27T187A) and more significantly lack of cytoplasmic p27 (p27S10A) attenuate BCR-ABL-mediated leukemogenesis. Consistent with this, autopsy and histopathological analysis revealed reduced hepatosplenomegaly (p27T187A mice) and improved cell differentiation with a relative increase of mature neutophils (p27S10A mice) as compared to wild-type controls. Conclusions: These results provide in vivo evidence that p27 has genetically separable dual roles in CML as both a nuclear tumor suppressor and cytoplasmic oncogene. A kinase-independent activity of BCR-ABL contributes to leukemogenesis through aberrant p27 localization to the cytoplasm. This oncogene activity is independent from the kinase-dependent degradation of nuclear p27. We speculate that the inability of tyrosine kinase inhibitors to reverse cytoplasmic p27 mislocalization may contribute to disease persistence despite effective inhibition of BCR-ABL kinase activity. Disclosures: Deininger: Novartis: Consultancy; BMS: Consultancy; Ariad: Consultancy; genzyme: Research Funding.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Arvind Batra ◽  
Besir Okur ◽  
Rainer Glauben ◽  
Ulrike Erben ◽  
Jakob Ihbe ◽  
...  

Abstract Besides being mandatory in the metabolic system, adipokines like leptin directly affect immunity. Leptin was found to be necessary in T helper 1 (Th1)-dependent inflammatory processes, whereas effects on Th2 cells are rarely understood. Here, we focused on leptin in T-helper cell polarization and in Th2-mediated intestinal inflammation in vivo. The induction of cytokine-producing Th1 or Th2 cells from naive CD4+ T cells under polarizing conditions in vitro was generally decreased in cells from leptin-deficient ob/ob mice compared with wild-type mice. To explore the in vivo relevance of leptin in Th2-mediated inflammation, the model of oxazolone-induced colitis was employed in wild-type, ob/ob, and leptin-reconstituted ob/ob mice. Ob/ob mice were protected, whereas wild-type and leptin-reconstituted ob/ob mice developed colitis. The disease severity went in parallel with local production of the Th2 cytokine IL-13. A possible explanation for the protection of ob/ob mice in Th1- as well as in Th2-dependent inflammation is provided by a decreased expression of the key transcription factors for Th1 and Th2 polarization, T-bet and GATA-3, in naive ob/ob T cells. In conclusion, these results support the regulatory function of the adipokine leptin within T-cell polarization and thus in the acquired immune system and support the concept that there is a close interaction with the endocrine system.


2003 ◽  
Vol 23 (11) ◽  
pp. 3929-3935 ◽  
Author(s):  
Nina Korsisaari ◽  
Derrick J. Rossi ◽  
Keijo Luukko ◽  
Kay Huebner ◽  
Mark Henkemeyer ◽  
...  

ABSTRACT The histidine triad (HIT) protein Hint has been found to associate with mammalian Cdk7, as well as to interact both physically and genetically with the budding yeast Cdk7 homologue Kin28. To study the function of Hint and to explore its possible role in modulating Cdk7 activity in vivo, we have characterized the expression pattern of murine Hint and generated Hint-deficient (Hint −/−) mice. Hint was widely expressed during mouse development, with pronounced expression in several neuronal ganglia, epithelia, hearts, and testes from embryonic day 15 onward. Despite this widespread expression, disruption of Hint did not impair murine development. Moreover, Hint-deficient mice had a normal life span and were apparently healthy. Histological examination of tissues with high Hint expression in wild-type animals did not show signs of abnormal pathology in Hint −/− mice. Functional redundancy within the HIT family was addressed by crossing Hint −/− mice with mice lacking the related HIT protein, Fhit, and by assaying the expression levels of the HIT protein gene family members Hint2 and Hint3 in Hint +/+ and Hint −/− tissues. Finally, Cdk7 kinase activity and cell cycle kinetics were found to be comparable in wild-type and Hint −/− mouse embryonic fibroblasts, suggesting that Hint may not be a key regulator of Cdk7 activity.


1993 ◽  
Vol 13 (3) ◽  
pp. 1675-1685 ◽  
Author(s):  
S Atherton-Fessler ◽  
L L Parker ◽  
R L Geahlen ◽  
H Piwnica-Worms

The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.


Sign in / Sign up

Export Citation Format

Share Document