scholarly journals Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3323
Author(s):  
Ulf Andersson ◽  
Kevin J. Tracey ◽  
Huan Yang

High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.

2022 ◽  
Vol 20 ◽  
Author(s):  
Fathimath Zaha Ikram ◽  
Alina Arulsamy ◽  
Thaarvena Retinasamy ◽  
Mohd. Farooq Shaikh

Background: High mobility group box 1 (HMGB1) protein is a damage-associated molecular pattern (DAMP) molecule that plays an important role in the repair and regeneration of tissue injury. It also acts as a pro-inflammatory cytokine through the activation of toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE), to elicit the neuroinflammatory response. HMGB1 may aggravate several cellular responses which may lead to pathological inflammation and cellular death. Thus, there have been a considerable amount of research into the pathological role of HMGB1 in diseases. However, whether the mechanism of action of HMGB1 is similar in all neurodegenerative disease pathology remains to be determined. Objective: Therefore, this systematic review aimed to critically evaluate and elucidate the role of HMGB1 in the pathology of neurodegeneration based on the available literature. Methods: A comprehensive literature search was performed on four databases; EMBASE, PubMed, Scopus, and CINAHL Plus. Results: A total of 85 articles were selected for critical appraisal, after subjecting to the inclusion and exclusion criteria in this study. The selected articles revealed that HMGB1 levels were found elevated in most neurodegeneration except in Huntington’s disease and Spinocerebellar ataxia, where the levels were found decreased. This review also showcased that HMGB1 may act on distinctive pathways to elicit its pathological response leading to the various neurodegeneration processes/diseases. Conclusion: While there have been promising findings in HMGB1 intervention research, further studies may still be required before any HMGB1 intervention may be recommended as a therapeutic target for neurodegenerative diseases.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 383 ◽  
Author(s):  
Yam Nath Paudel ◽  
Efthalia Angelopoulou ◽  
Christina Piperi ◽  
Iekhsan Othman ◽  
Khurram Aamir ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.


2018 ◽  
Vol 47 (4) ◽  
pp. 1319-1337 ◽  
Author(s):  
Han Wu ◽  
Ran Li ◽  
Li-Gang Pei ◽  
Zhong-Hai Wei ◽  
Li-Na Kang ◽  
...  

High mobility group box-1 (HMGB-1), a typical damage-associated molecular pattern protein released from various cells, was first identified in 1973. It is usually stored in the nuclei of cells. Several modifications of HMGB-1 promote its translocation to the cytosol, and it is actively or passively released from cells. When outside of the cells, HMGB-1is crucial in inflammation. It exerts its biological functions via interaction with its receptors, including receptor for advanced glycation end products (RAGE) and Toll-like receptor 4(TLR4). A large number of studies showed a close link between inflammation and thrombosis. This review demonstrated the increased expression of HMGB-1 in thrombosis-related diseases, including coronary artery disease, stroke, peripheral arterial disease, disseminated intravascular coagulation, and venous thrombosis. Besides, it summarized the current understanding of the emerging link between HMGB-1 and thrombosis from three aspects: platelet, NETs, and coagulation and fibrinolysis factors. Finally, it explored the possible therapeutic strategies targeting HMGB-1 for treating thrombosis-related diseases.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2017 ◽  
Vol 23 (8) ◽  
pp. 1135-1141 ◽  
Author(s):  
Sho-ichi Yamagishi ◽  
Takanori Matsui ◽  
Yuji Ishibashi ◽  
Fumiyuki Isami ◽  
Yumi Abe ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingluan Han ◽  
Xiaoyu Wang ◽  
Fengpin Wang ◽  
Zhe Zhao ◽  
Gousi Li ◽  
...  

Abstract Background Avr-Pita was the first effector identified in the blast fungus (Magnaporthe oryzae)–rice (Oryza sativa) pathosystem. However, the molecular mechanism underlying its effects on the host plant has remained a long-standing mystery. Results Here, we report that ectopically expressing Avr-Pita in rice enhances susceptibility to M. oryzae and suppresses pathogen-associated molecular pattern (PAMP)-triggered defense responses. Avr-Pita targets the host mitochondria and interacts with the cytochrome c oxidase (COX) assembly protein OsCOX11, a key regulator of mitochondrial reactive oxygen species (ROS) metabolism in rice. Overexpressing Avr-Pita or OsCOX11 increased COX activity and decreased ROS accumulation triggered by the fungal PAMP chitin. OsCOX11-overexpressing plants showed increased susceptibility to M. oryzae, whereas OsCOX11-knockdown plants showed resistance to M. oryzae. Conclusions Taken together, these findings suggest that the fungal pathogen M. oryzae delivers the effector Avr-Pita to the host plant, where it enhances COX activity thus decreasing ROS accumulation. Therefore, this effector suppresses host innate immunity by perturbing ROS metabolism in the mitochondria.


Author(s):  
Kamil Gill ◽  
Michal Kups ◽  
Patryk Harasny ◽  
Tomasz Machalowski ◽  
Marta Grabowska ◽  
...  

Since varicocele is so common in infertile men, this study intends to analyse the relationships between varicocele and conventional semen characteristics, sperm nuclear DNA dispersion and oxidation-reduction potential (ORP) in semen. Varicocele-positive and varicocele-negative infertile men (study groups) showed significantly lower standard sperm parameters and higher sperm DNA fragmentation (SDF) and ORP in semen than healthy volunteers and subjects with proven fertility (control groups). A lower proportion of low SDF levels (0–15% SDF) and higher incidence of high SDF levels (>30% SDF), as well as a higher prevalence of high ORP values (>1.37 mV/106 sperm/mL), were found in the study groups vs. the control groups. Moreover, infertile men had significantly lower odds ratios (ORs) for low SDF levels and significantly higher ORs for high SDF levels and high ORP. SDF and ORP were negatively correlated with sperm number, morphology, motility and vitality. Furthermore, a significant positive correlation was found between SDF and ORP. The obtained results suggest that disorders of spermatogenesis may occur in varicocele-related infertility. These abnormalities are manifested not only by reduced standard semen parameters but also by decreased sperm DNA integrity and simultaneously increased oxidative stress in semen.


Author(s):  
Richard A. Seidu ◽  
Min Wu ◽  
Zhaoliang Su ◽  
Huaxi Xu

Gliomas represent 60% of primary intracranial brain tumors and 80% of all malignant types, with highest morbidity and mortality worldwide. Although glioma has been extensively studied, the molecular mechanisms underlying its pathology remain poorly understood. Clarification of the molecular mechanisms involved in their development and/or treatment resistance is highly required. High mobility group box 1 protein (HMGB1) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation and migration, through receptor for advanced glycation end products and toll like receptors in a number of cancers including gliomas. It is known that excessive release of HMGB1 in cancer leads to unlimited replicative potential, ability to develop blood vessels (angiogenesis), evasion of programmed cell death (apoptosis), self-sufficiency in growth signals, insensitivity to inhibitors of growth, inflammation, tissue invasion and metastasis. In this review we explore the mechanisms by which HMGB1 regulates apoptosis and autophagy in glioma. We also looked at how HMGB1 mediates glioma regression and promotes angiogenesis as well as possible signaling pathways with an attempt to provide potential therapeutic targets for the treatment of glioma.


2014 ◽  
Vol 55 (5) ◽  
pp. 1165 ◽  
Author(s):  
Shin-Ae Lee ◽  
Man Sup Kwak ◽  
Sol Kim ◽  
Jeon-Soo Shin

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Yi Liu ◽  
Guo-Bin Zhuang ◽  
Xue-Zhi Zhou

High-mobility group box 1 (HMGB1) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation, and migration in eye diseases. It induces signaling pathways by binding to the receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) 2, 4, and 9. This proinflammatory activity is considered to be important in the pathogenesis of a wide range of ocular diseases resulting from hemodynamic changes, presence of neovascular endothelial cells, secretion of intraocular immune factors or inflammation, and apoptosis of retinal cell layers. Further work is needed to elucidate in detail how HMGB1 contributes to ocular disease and how its damaging activity can be modulated. In this review, we summarize current knowledge on HMGB1 as a ligand that can evoke inflammation and immune responses in ocular diseases.


Sign in / Sign up

Export Citation Format

Share Document