scholarly journals Effect of Drought and Heavy Metal Contamination on Growth and Photosynthesis of Silver Birch Trees Growing on Post-Industrial Heaps

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Krzysztof Sitko ◽  
Magdalena Opała-Owczarek ◽  
Gabriela Jemioła ◽  
Żaneta Gieroń ◽  
Michał Szopiński ◽  
...  

Silver birch trees (Betula pendula Roth) are a pioneering species in post-industrial habitats, and have been associated with an expansive breeding strategy and low habitat requirements. We conducted ecophysiological and dendroclimatological studies to check whether there are any features of which the modification enables birch trees to colonise extreme habitats successfully. We characterised the efficiency of the photosynthetic apparatus, the gas exchange, the content of pigments in leaves, and the growth (leaf thickness and tree-ring width) of birch trees on a post-coal mine heap, a post-smelter heap, and a reference site. Birch growth was limited mainly by temperature and water availability during summer, and the leaves of the birch growing on post-industrial heaps were significantly thicker than the reference leaves. Moreover, birch trees growing on heaps were characterised by a significantly higher content of flavonols and anthocyanins in leaves and higher non-photochemical quenching. In addition, birches growing on the post-coal mine heap accumulated a concentration of Mn in their leaves, which is highly toxic for most plant species. Increasing the thickness of leaves, and the content of flavonols and anthocyanins, as well as efficient non-photochemical quenching seem to be important features that improve the colonization of extreme habitats by birches.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Weichang Gong ◽  
Bruce L. Dunn ◽  
Yaqing Chen ◽  
Yunmei Shen

AbstractHeavy metal (HM) pollutants can cause serious phytotoxicity or oxidative stress in plants. Buddleja L., commonly known as “butterfly bushes”, are frequently found growing on HM-contaminated land. However, to date, few studies have focused on the physiological and biochemical responses of Buddleja species to HM stress. In this study, potted seedlings of B. asiatica Lour. and B. macrostachya Wall. ex Benth. were subjected to various cadmium (Cd) concentrations (0, 25, 50, 100, and 200 mg kg−1) for 90 days. Both studied Buddleja species showed restricted Cd translocation capacity. Exposure to Cd, non-significant differences (p > 0.05) were observed, including quantum yield of photosystem II (PSII), effective quantum yield of PSII, photochemical quenching and non-photochemical quenching in both species between all studied Cd concentrations. Moreover, levels of cellular reactive oxygen species (ROS) significantly declined (p < 0.05) with low malondialdehyde concentrations. In B. asiatica, high superoxide dismutase and significantly enhanced (p < 0.05) peroxidase (POD) activity contributed greatly to the detoxification of excess ROS, while markedly enhanced POD activity was observed in B. macrostachya. Additionally, B. macrostachya showed higher membership function values than did B. asiatica. These results suggested that both Buddleja species exhibited high Cd resistance and acclimatization.


Symbiosis ◽  
2021 ◽  
Author(s):  
Katalin Veres ◽  
Zsolt Csintalan ◽  
Zsanett Laufer ◽  
Rita Engel ◽  
Krisztina Szabó ◽  
...  

AbstractIn lichens, each symbiotic partner cooperates for the survival of the symbiotic association. The protection of the susceptible photosynthetic apparatus is essential for both participants. The mycobiont and photobiont contribute to the protection against the damaging effect of excess light by various mechanisms. The present study investigated the effect of seasonality and microhabitat exposure on photoprotection and photoacclimation in the photo- and the mycobiont of six lichen species with different thallus morphology in inland dune system in the Kiskunság region (Hungary) with shaded, more humid and exposed, drier dune sides. High-Performance Liquid Chromatography, spectrophotometry, chlorophyll a fluorescence kinetic technique were used, and micrometeorological data were collected. The four years data series revealed that the north-east-facing side was characterized by higher relative humidity and lower light intensities compared to the south-west-facing drier and more exposed sides. The south-west facing side was exposed to direct illumination 3–4 hours longer in winter and 1–2 hours shorter in summer than the north-east facing side of the dune, influencing the metabolism of sun and shade populations of various species. Because rapid desiccation caused short active periods of lichens during bright and drier seasons and on exposed microhabitats, the rapid, non-regulated non-photochemical quenching mechanisms in the photobiont had a significant role in protecting the photosynthetic system in the hydrated state. In dehydrated conditions, thalli were mainly defended by the solar screening metabolites produced by the mycobiont and curling during desiccation (also caused by the mycobiont). Furthermore, the efficacy of light use (higher chlorophyll and carotenoid concentration) increased because of short hydrated periods. Still, a lower level of received irradiation was appropriate for photosynthesis in dry seasons and on sun exposed habitats. In humid seasons and microhabitats, more extended active periods lead to increased photosynthesis and production of solar radiation protectant fungal metabolites, allowing a lower level of photoprotection in the form of regulated non-photochemical quenching by the photobiont. Interspecific differences were more pronounced than the intraspecific ones among seasons and microhabitat types.


2021 ◽  
Author(s):  
Lauren Nicol ◽  
Vincenzo Mascoli ◽  
Herbert van Amerongen ◽  
Roberta Croce

Excess excitation energy in the light-harvesting antenna of Photosystem II (PSII) can cause irreversible damage to the photosynthetic apparatus. In periods of high light intensity, a feedback mechanism known as non-photochemical quenching (NPQ), induces the formation of quenchers which can safely dissipate excess excitation energy as heat. Although quenchers have been identified in more than one compartment of the PSII supercomplex, there is currently no quantitative description of how much NPQ is occurring at each of these locations. Here, we perform time-resolved fluorescence measurements on WT and antenna mutants lacking LHCII (NoL) and all peripheral antenna (Ch1 and Ch1lhcb5). By combining the results with those of steady-state fluorescence experiments we are able to estimate the intrinsic rate of NPQ for each plant and each PSII compartment. It is concluded that 60-70% of quenching occurs in LHCII, 15-20% in the minor antenna and 15-20% in the PSII core.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Tamara Golovko ◽  
Olga Dymova ◽  
Ilya Zakhozhiy ◽  
Igor Dalke ◽  
Galina Tabalenkova

The study of daily changes in photosynthetic rate, of energy used in photochemical and non-photochemical processes, and of carotenoid composition aimed at evaluating the role of xanthophyll cycle (XC) in protection of hoary plantain plants (Plantago media) in nature. The leaves of sun plants differed from shade plants in terms of CO(2) exchange rate and photosynthetic pigments content. The total pool XC pigments and the conversion state increased from morning to midday in sun plants. An increase in zeaxanthin content occurred concomitantly with the violaxanthin decrease. About 80% violaxanthin was involved in conversion. The maximum of zeaxanthin in XC pigments pool was 60%. The conversion state of XC was twice as lower in shade plants than that in sun plants. The photosynthesis of sun leaves was depressed strongly at midday, but changes of maximum quantum yield of PS2 (F(v)/F(m)) were not apparent at that time. The coefficient qN (non-photochemical quenching) in the sun leaves changed strongly, from 0.3 to 0.9 as irradiance increased. The direct relation between heat dissipation and the conversion state of XC in plantain leaves was revealed. Thus, plantain leaves were found to be resistant to excess solar radiation due to activation of qN mechanisms associated with the XC de-epoxidation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249373
Author(s):  
Ahmed F. Yousef ◽  
Muhammad M. Ali ◽  
Hafiz M. Rizwan ◽  
Shehu Abubakar Tadda ◽  
Hazem M. Kalaji ◽  
...  

It is already known that the process of photosynthesis depends on the quality and intensity of light. However, the influence of the new light sources recently used in horticulture, known as Light Emitting Diodes (LEDs), on this process is not yet fully understood. Chlorophyll a fluorescence measurement has been widely used as a rapid, reliable, and noninvasive tool to study the efficiency of the photosystem II (PSII) and to evaluate plant responses to various environmental factors, including light intensity and quality. In this work, we tested the responses of the tomato photosynthetic apparatus to different light spectral qualities. Our results showed that the best performance of the photosynthetic apparatus was observed under a mixture of red and blue light (R7:B3) or a mixture of red, green and blue light (R3:G2:B5). This was demonstrated by the increase in the effective photochemical quantum yield of PSII (Y[II]), photochemical quenching (qP) and electron transport rate (ETR). On the other hand, the mixture of red and blue light with a high proportion of blue light led to an increase in non-photochemical quenching (NPQ). Our results can be used to improve the production of tomato plants under artificial light conditions. However, since we found that the responses of the photosynthetic apparatus of tomato plants to a particular light regime were cultivar-dependent and there was a weak correlation between the growth and photosynthetic parameters tested in this work, special attention should be paid in future research.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 721
Author(s):  
Magdalena Trojak ◽  
Ernest Skowron

Photosynthetic pigments of plants capture light as a source of energy for photosynthesis. However, the amount of energy absorbed often exceeds its utilization, thus causing damage to the photosynthetic apparatus. Plants possess several mechanisms to minimize such risks, including non-photochemical quenching (NPQ), which allows them to dissipate excess excitation energy in the form of harmless heat. However, under non-stressful conditions in indoor farming, it would be favorable to restrict the NPQ activity and increase plant photosynthetic performance by optimizing the light spectrum. Towards this goal, we investigated the dynamics of NPQ, photosynthetic properties, and antioxidant activity in the leaves of tomato plants grown under different light qualities: monochromatic red (R), green (G), or blue (B) light (L) at 80 µmol m−2 s−1 and R:G:B = 1:1:1 (referred to as the white light (WL)) at 120 µmol m−2 s−1. The results confirm that monochromatic BL increased the quantum efficiency of PSII and photosynthetic pigments accumulation. The RL and BL treatments enhanced the NPQ amplitude and showed negative effects on antioxidant enzyme activity. In contrast, plants grown solely under GL or WL presented a lower amplitude of NPQ due to the reduced accumulation of NPQ-related proteins, photosystem II (PSII) subunit S (PsbS), PROTON GRADIENT REGULATION-LIKE1 (PGRL1), cytochrome b6f subunit f (cytf) and violaxanthin de-epoxidase (VDE). Additionally, we noticed that plants grown under GL or RL presented an increased rate of lipid peroxidation. Overall, our results indicate the potential role of GL in lowering the NPQ amplitude, while the role of BL in the RGB spectrum is to ensure photosynthetic performance and photoprotective properties.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 206-212 ◽  
Author(s):  
K. Kosová ◽  
D. Haisel ◽  
I. Tichá

The effect of chilling on light dependence of photosynthetic and chlorophyll a fluorescence characteristics in two maize genotypes CE 704 and CE 810 grown in a glasshouse during spring and autumn was studied. In spring, the net photosynthetic rate (P<sub>N</sub>) of CE 704 plants was not affected by chilling under moderate irradiance but it was strongly affected under a saturating one. This indicates that efficiency of photosynthetic apparatus was not affected by chilling but its capacity was decreased. Contrary to CE 704, CE 810 plants were not affected by chilling under saturating irradiance. In autumn, CE 704 plants adapted to chilling and no statistically significant differencies in P<sub>N</sub> and Fv/Fm between chilled and control plants in the whole range of irradiance were found. Enhanced activity of non-photochemical quenching (NPQ) in chilled CE 704 plants under saturating irradiance corresponded with an increased level of xanthophyll cycle pigments and an increased deepoxidation state of these pigments.


2000 ◽  
Vol 355 (1402) ◽  
pp. 1385-1394 ◽  
Author(s):  
Irene Baroli ◽  
Krishna K. Niyogi

The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1 Chl*, 3 Chl*, and 1 1O 2 *. Quenching of 1 Chl* results in harmless dissipation of excitation energy as heat and is measured as non–photochemical quenching (NPQ) of chlorophyll fluorescence. The multiple roles of xanthophylls in photoprotection are being addressed by characterizing mutants of Chlamydomonas reinhardtii and Arabidopsis thaliana . Analysis of Arabidopsis mutants that are defective in 1 Chl* quenching has shown that, in addition to specific xanthophylls, the psbS gene is necessary for NPQ. Double mutants of Chlamydomonas and Arabidopsis that are deficient in zeaxanthin, lutein and NPQ undergo photo–oxidative bleaching in high light. Extragenic suppressors of the Chlamydomonas npq1 lor1 double mutant identify new mutations that restore varying levels of zeaxanthin accumulation and allow survival in high light.


2021 ◽  
Vol 7 (9) ◽  
pp. 59-68
Author(s):  
Pashayeva

Plants acclimate to fluctuations in light conditions by adjusting their photosynthetic apparatus. When the light intensity exceeds, an unbalanced excitation of the two photosystems occurs. It results in reduced photosynthetic efficiency. Photosystem II (PSII) is the most susceptible and dynamically regulated part of the light reactions in the thylakoid membrane. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is one of the short-term photoprotective mechanisms, which consist of the number of components. The strongest NPQ component — qE is localized in the PSII antenna and induced in plants by lumen acidification, the activation of the pH sensor PsbS, and the conversion of the violaxanthin to zeaxanthin within the xanthophyll cycle. Here, I present data that characterizes the role of the PsbS protein in organization of PSII structural components in isolated PSII-enriched membranes. The preparations were isolated from wild-type (WT) and PsbS-less (PsbS-KO) mutant rice plant. Based on the obtained results, the PSII-enriched membranes from WT and PsbS-KO differ as in the level of lipids, also in carotenoids. I conclude that the PsbS-dependent changes in membrane fluidity in PsbS-KO mutant plants compensated with increased lipid level in mutant plants.


Author(s):  
L. M. Аbramchik ◽  
I. N. Domanskaya ◽  
V. N. Makarov ◽  
E. V. Serdiuchenko ◽  
T. S. Bachyshcha ◽  
...  

The effect of inductors of the immune response of β-aminobutyric acid (BABA), β-1.3-glucan (GK), salicylic acid (SA) and their mixture on the structural and functional state of photosynthetic apparatus and the oxidative status of cucumber plants under infection by fungal pathogen Fusarium oxysporum was studied. It was found that the disorganizing effect of the pathogenic fungus Fusarium oxusporum in cucumber plants caused the suppression of the synthesis of photosynthetic pigments and the functional activity of the photosystem 2 in chloroplast membranes, as well as in changing the character of the redistribution of absorbed light energy, leading to a decrease in the photochemical energy conversion (qP) and enhancing non-photochemical quenching (qN) of chlorophyll. In this conditions intensification of lipid peroxidation processes was observed. The use of immunomodulators such as BABA, GK and SA promotes the improvement of the adaptive properties of the photosynthetic apparatus, and the reduction of oxidative processes activity in infected cucumber leaves, which indicates the protective role of these substances against the fusarious wilt caused by Fusarium oxysporum.


Sign in / Sign up

Export Citation Format

Share Document