scholarly journals Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 93 ◽  
Author(s):  
Jessica Martin ◽  
Dori Woods ◽  
Jonathan Tilly

A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaqi Li ◽  
Peiyuan Tang ◽  
Sanjun Cai ◽  
Junjie Peng ◽  
Guoqiang Hua

AbstractThree-dimensional cultured organoids have become a powerful in vitro research tool that preserves genetic, phenotypic and behavioral trait of in vivo organs, which can be established from both pluripotent stem cells and adult stem cells. Organoids derived from adult stem cells can be established directly from diseased epithelium and matched normal tissues, and organoids can also be genetically manipulated by CRISPR-Cas9 technology. Applications of organoids in basic research involve the modeling of human development and diseases, including genetic, infectious and malignant diseases. Importantly, accumulating evidence suggests that biobanks of patient-derived organoids for many cancers and cystic fibrosis have great value for drug development and personalized medicine. In addition, organoids hold promise for regenerative medicine. In the present review, we discuss the applications of organoids in the basic and translational research.


Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


1979 ◽  
Vol 149 (5) ◽  
pp. 1260-1264 ◽  
Author(s):  
M Kasai ◽  
JC Leclerc ◽  
L McVay-Boudreau ◽  
FW Shen ◽  
H Cantor

Relatively large numbers of nonimmune spleen cells do not protect against the local growth of two lymphomas. However, this heterogeneous population of splenic lymphocytes contains a subset of cells that efficiently protects against in vivo tumor growth. This cell population (cell-surface phenotype Thyl.2(-)Ig(-)Ly5.1(+)) represents less than 5 percent of the spleen cell population and is responsible for in vitro NK-mediated lysis. Although these studies clearly and directly demonstrate that Ly5(+) NK cells selected from a heterogeneous lymphoid population from nonimmune mice can protect syngeneic mice against local in vivo growth of two different types of tumor cells (in contrast to other lymphocyte sets within the spleen), they do not directly bear upon the role of NK cells in immunosurveillance. They do indicate that highly enriched Ig(-)Thyl(-)Ly5(+) cells, which account for virtually all in vitro NK activity, can retard tumor growth in vivo. It is difficult to ascribe all anti-tumor surveillance activity to NK cells, because they probably do not recirculate freely throughout the various organ systems of the body. Perhaps NK ceils may play a role in prevention of neoplastic growth within discrete anatomic compartments where there is rapid differentiation of stem cells to mature progeny (e.g., bone marrow, spleen, and portions of the gastrointestinal tract)and may normally act to regulate the growth and differentiation of non-neoplastic stem cells. Long-term observation of chimeric mice repopulated with bone marrow from congenic or mutant donors expressing very low or very high NK activity may help to answer these questions.


2011 ◽  
Vol 22 (8) ◽  
pp. 1312-1320 ◽  
Author(s):  
Ellen C. Teng ◽  
Lance R. Todd ◽  
Thomas J. Ribar ◽  
William Lento ◽  
Leah Dimascio ◽  
...  

Growth factor erv1-like (Gfer) is an evolutionarily conserved sulfhydryl oxidase that is enriched in embryonic and adult stem cells and plays an essential prosurvival role in pluripotent embryonic stem cells. Here we show that knockdown (KD) of Gfer in hematopoietic stem cells (HSCs) compromises their in vivo engraftment potential and triggers a hyper-proliferative response that leads to their exhaustion. KD of Gfer in HSCs does not elicit a significant alteration of mitochondrial morphology or loss of cell viability. However, these cells possess significantly reduced levels of the cyclin-dependent kinase inhibitor p27kip1. In contrast, overexpression of Gfer in HSCs results in significantly elevated total and nuclear p27kip1. KD of Gfer results in enhanced binding of p27kip1 to its inhibitor, the COP9 signalosome subunit jun activation-domain binding protein 1 (Jab1), leading to its down-regulation. Conversely, overexpression of Gfer results in its enhanced binding to Jab1 and inhibition of the Jab1-p27kip1 interaction. Furthermore, normalization of p27kip1 in Gfer-KD HSCs rescues their in vitro proliferation deficits. Taken together, our data demonstrate the presence of a novel Gfer-Jab1-p27kip1 pathway in HSCs that functions to restrict abnormal proliferation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Crystal C. Kennedy ◽  
Erin E. Brown ◽  
Nadia O. Abutaleb ◽  
George A. Truskey

The vascular endothelium is present in all organs and blood vessels, facilitates the exchange of nutrients and waste throughout different organ systems in the body, and sets the tone for healthy vessel function. Mechanosensitive in nature, the endothelium responds to the magnitude and temporal waveform of shear stress in the vessels. Endothelial dysfunction can lead to atherosclerosis and other diseases. Modeling endothelial function and dysfunction in organ systems in vitro, such as the blood–brain barrier and tissue-engineered blood vessels, requires sourcing endothelial cells (ECs) for these biomedical engineering applications. It can be difficult to source primary, easily renewable ECs that possess the function or dysfunction in question. In contrast, human pluripotent stem cells (hPSCs) can be sourced from donors of interest and renewed almost indefinitely. In this review, we highlight how knowledge of vascular EC development in vivo is used to differentiate induced pluripotent stem cells (iPSC) into ECs. We then describe how iPSC-derived ECs are being used currently in in vitro models of organ function and disease and in vivo applications.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Boxian Huang ◽  
Chunfeng Qian ◽  
Chenyue Ding ◽  
Qingxia Meng ◽  
Qinyan Zou ◽  
...  

Abstract Background With the development of regenerative medicine and tissue engineering technology, almost all stem cell therapy is efficacious for the treatment of premature ovarian failure (POF) or premature ovarian insufficiency (POI) animal models, whereas little stem cell therapy has been practiced in clinical settings. The underlying molecular mechanism and safety of stem cell treatment in POI are not fully understood. In this study, we explored whether fetal mesenchymal stem cells (fMSCs) from the liver restore ovarian function and whether melatonin membrane receptor 1 (MT1) acts as a regulator for treating POI disease. Methods We designed an in vivo model (chemotherapy-induced ovary damage) and an in vitro model (human ovarian granulosa cells (hGCs)) to understand the efficacy and molecular cues of fMSC treatment of POI. Follicle development was observed by H&E staining. The concentration of sex hormones in serum (E2, AMH, and FSH) and the concentration of oxidative and antioxidative metabolites and the enzymes MDA, SOD, CAT, LDH, GR, and GPx were measured by ELISA. Flow cytometry (FACS) was employed to detect the percentages of ROS and proliferation rates. mRNA and protein expression of antiapoptotic genes (SURVIVIN and BCL2), apoptotic genes (CASPASE-3 and CASPASE-9), and MT1 and its downstream genes (JNK1, PCNA, AMPK) were tested by qPCR and western blotting. MT1 siRNA and related antagonists were used to assess the mechanism. Results fMSC treatment prevented cyclophosphamide (CTX)-induced follicle loss and recovered sex hormone levels. Additionally, fMSCs significantly decreased oxidative damage, increased oxidative protection, improved antiapoptotic effects, and inhibited apoptotic genes in vivo and in vitro. Furthermore, fMSCs also upregulated MT1, JNK1, PCNA, and AMPK at the mRNA and protein levels. With MT1 knockdown or antagonist treatment in normal hGCs, the protein expression of JNK1, PCNA, and AMPK and the percentage of proliferation were impaired. Conclusions fMSCs might play a crucial role in mediating follicular development in the POI mouse model and stimulating the activity of POI hGCs by targeting MT1.


2018 ◽  
Vol 46 (5) ◽  
pp. 2114-2126 ◽  
Author(s):  
Meng Wu ◽  
Jiaqiang Xiong ◽  
Lingwei Ma ◽  
Zhiyong Lu ◽  
Xian Qin ◽  
...  

Background/Aims: The isolation and establishment of female germline stem cells (FGSCs) is controversial because of questions regarding the reliability and stability of the isolation method using antibody targeting mouse vasa homologue (MVH), and the molecular mechanism of FGSCs self-renewal remains unclear. Thus, there needs to be a simple and reliable method for sorting FGSCs to study them. Methods: We applied the differential adhesion method to enrich FGSCs (DA-FGSCs) from mouse ovaries. Through four rounds of purification and 7-9 subsequent passages, DA-FGSC lines were established. In addition, we assessed the role of the phosphoinositide-3 kinase (PI3K)-AKT pathway in regulating FGSC self-renewal. Results: The obtained DA-FGSCs spontaneously differentiated into oocyte-like cells in vitro and formed functional eggs in vivo that were fertilized and produced healthy offspring. AKT was rapidly phosphorylated when the proliferation rate of FGSCs increased after 10 passages, and the addition of a chemical PI3K inhibitor prevented FGSCs self-renewal. Furthermore, over-expression of AKT-induced proliferation and differentiation of FGSCs, c-Myc, Oct-4 and Gdf-9 levels were increased. Conclusions: The differential adhesion method provides a more feasible approach and is an easier procedure to establish FGSC lines than traditional methods. The AKT pathway plays an important role in regulation of the proliferation and maintenance of FGSCs. These findings could help promote stem cell studies and provide a better understanding of causes of ovarian infertility, thereby providing potential treatments for infertility.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Narasimman Gurusamy ◽  
SHEEJA RAJASINGH ◽  
Vijay Selvam ◽  
Vinoth Sigamani ◽  
Jayavardini Vasanthan ◽  
...  

Introduction: Mesenchymal stem cells (MSCs) are multipotent adult stem cells having an extensive proliferation capacity in vitro and in vivo. These MSCs can differentiate into various mesoderm-type cells such as osteoblasts, cardiomyocytes, etc. A subpopulation of urinary epithelial cells (UECs) have been identified in urine samples, is considered a promising cell resource for generating autologous induced-pluripotent stem cells (iPSCs). Hypothesis: We hypothesize that the production of high quality, autologous, induced-MSCs (iMSCs) with high replicative potential suitable for the regenerative therapy, using an easy, and the most non-invasive method of isolation, from human UECs. Methods and Results: Human urine was collected and centrifuged to obtain the UECs, which were characterized by the expression of CK19 and ZO1. These UECs were reprogrammed to iPSCs using a cocktail of mRNAs (OCT4, KLF4, SOX2, c-MYC, Nanog and Lin28) along with Lipofectamine for 11 days in culture. These iPSCs were characterized by the expression of the pluripotent markers such as OCT4, SOX2 and SSEA4. The iPSCs were subsequently differentiated into iMSCs using the mesenchymal specific medium for 21 days. iMSCs were harvested at the end of 21 days, and they were characterized by the high levels of mRNA and protein expressions of mesenchymal specific markers such as CD73, CD90 and CD105 (Fig. 1A). FACS analysis showed that more than 93% of the cells were positive for the markers of MSCs (Fig. 1B) . Moreover, the obtained iMSCs have high proliferation capacity compared with the adult stem cells. Conclusions: We have developed an easy, non-invasive method for obtaining autologous, non-immunogenic and highly-proliferating iMSCs suitable for various regenerative therapies including cardiac diseases, from urinary epithelial cells.


2017 ◽  
Vol 14 (134) ◽  
pp. 20170382 ◽  
Author(s):  
P. A. Nistor ◽  
P. W. May

Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo , diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required.


Sign in / Sign up

Export Citation Format

Share Document