scholarly journals Combination Therapy of Mesenchymal Stromal Cells and Interleukin-4 Attenuates Rheumatoid Arthritis in a Collagen-Induced Murine Model

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 823 ◽  
Author(s):  
Shaimaa M. Haikal ◽  
Nourtan F. Abdeltawab ◽  
Laila A. Rashed ◽  
Tarek I. Abd El-Galil ◽  
Heba A. Elmalt ◽  
...  

Rheumatoid arthritis (RA) is a disease of the joints that causes decreased quality of life. Mesenchymal stromal cells (MSCs) have immunosuppressive properties, with possible use in the treatment of RA. Similarly, interleukin (IL)-4 has been shown as a potential RA treatment. However, their combination has not been explored before. Therefore, this study aimed to investigate the effect of a combination therapy of MSCs and IL-4 in the treatment of RA, using a murine collagen-induced arthritis (CIA) model. Arthritis was induced in Balb/c mice by two intradermal injections of type II collagen (CII), at days 0 and 21. CIA mice were randomly assigned to four groups; group I received an intravenous injection of mouse bone marrow-derived MSCs, while group II received an intraperitoneal injection of IL-4. Group III received a combined treatment of MSC and IL-4, while group IV served as a CIA diseased control group receiving phosphate buffer saline (PBS). A fifth group of healthy mice served as the normal healthy control. To assess changes induced by different treatments, levels of RA-associated inflammatory cytokines and biomarkers were measured in the serum, knee joints, and synovial tissue, using ELISA and Real Time-qPCR. Histopathological features of knee joints were analyzed for all groups. Results showed that combined MSC and IL-4 treatment alleviated signs of synovitis in CIA mice, reverting to the values of healthy controls. This was evident by the decrease in the levels of rheumatic factor (RF), C-reactive protein (CRP) and anti-nuclear antibodies (ANA) by 64, 80, and 71%, respectively, compared to the diseased group. Moreover, tumor necrosis factor-alpha (TNF- α) and monocyte chemoattractant protein-1 (MCP-1) levels decreased by 63 and 68%, respectively. Similarly, our gene expression data showed improvement in mice receiving combined therapy compared to other groups receiving single treatment, where cartilage oligomeric matrix protein (Comp), tissue inhibitor metalloproteinase-1 (Timp1), matrix metalloproteinase1 (Mmp-1), and IL-1 receptor (Il-1r) gene expression levels decreased by 75, 70, and 78%, respectively. Collectively, treatment with a combined therapy of MSC and IL-4 might have an efficient therapeutic effect on arthritis. Thus, further studies are needed to assess the potential of different MSC populations in conjugation with IL-4 in the treatment of experimental arthritis.

2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Sabeen Khalid ◽  
Muhammad Javad Yousaf ◽  
Amir Rashid ◽  
Saleem Ahmad Khan

Background & Objectives: The hallmark of rheumatoid arthritis is the inflammation that is mediated by the macrophages and monocytes that cause release of pro-inflammatory cytokines like interleukin-18. It is highly expressed in serum of patients suffering from rheumatoid arthritis and has a positive association with disease activity. The aim of this study was to analyze the gene expression of interleukin-18 in rheumatoid arthritis patients on disease modifying anti-rheumatic drug therapy. Methods: The cross sectional comparative study is conducted at Department of Biochemistry and Molecular Biology and Center for Research in Experimental and Applied Medicine (CREAM-1Lab), Army Medical College, Rawalpindi, in collaboration with Rheumatology Department, Military Hospital, Rawalpindi. Study was conducted on two groups consisting of Group-I of rheumatoid arthritis patients on diseases modifying anti-rheumatic drugs and control Group-II comprising of normal healthy individuals. Non-probability purposive sampling was done from patients and controls. The duration of study was one year i-e from November 2015 to November 2016. Relative quantification of gene expression of interleukin-18 was done by Real time PCR using ∆∆CT method. Results: Expression analysis for interleukin-18 showed down regulation of gene in rheumatoid arthritis patients as compared to controls. Conclusion: Interleukin-18 gene shows down regulation in rheumatoid arthritis patients on disease modifying anti-rheumatic drugs therapy. doi: https://doi.org/10.12669/pjms.35.3.1070 How to cite this:Khalid S, Yousaf MJ, Rashid A, Khan SA. Gene expression of Interleukin-18 in rheumatoid arthritis patients on disease modifying anti-rheumatic drug therapy. Pak J Med Sci. 2019;35(3):---------. doi: https://doi.org/10.12669/pjms.35.3.1070 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Author(s):  
ashraf alemi ◽  
Mojtaba Haghi Karamallah ◽  
Seyed Ahmad Hosseini ◽  
Noorollah Tahery ◽  
Esmat Radmanesh ◽  
...  

Abstract The combination therapy of cytotoxic drugs and chemosensitizing agents encapsulated in nanoparticles has been highlighted as an effective treatment for various cancers. Combination therapy is promising to produce synergistic anticancer effects, to magnify the treatment effect and overcome multidrug resistance. In this investigation, we have studied augmentation of therapeutic efficacy upon c combinational treatment of paclitaxel (PCL) and curcumin (Cur), an inhibitor of nuclear factor kappa B (NF-κB), in OVCAR-3 cell. PCL and Cur were encapsulated in nanoniosome formulations. Then, the effects of nanoniosome formulations on cytotoxicity, expression profile of AKT-1 gene and NF-κB activity were evaluated. The findings showed that nanoniosomes were highly efficient in delivering the PCL and Cur drugs to OVCAR-3 cell. A 3-fold and 3.6-fold reduction in Cur and PCL concentration were measured, respectively, when the Cur and PCL were administered in nanoniosomes compared to free Cur and free PCL solutions in OVCAR-3 cell. Moreover, curcumin could significantly increase cell growth inhibition of paclitaxel so that, in presence of NioCur, the IC50 of NioPCL was diminished to ∼2.4 –fold. AKT-1 gene expression studies showed that co-administration of curcumin/paclitaxel nanoniosome formulations caused 91.2% reduction in AKT-1 gene expression compared to control group. On the other hand, this co-administration caused 79.42% reduction in the amount of NF-κB activity and a 4-fold reduction in the activity of the MDR protein pumps in cancer cells compared to the control group. Our findings demonstrate that the combination therapy of PCL with Cur using the nanoniosomes delivery is a promising strategy for breast cancer more effective therapy


2021 ◽  
Vol 22 (3) ◽  
pp. 1027
Author(s):  
Christian Behm ◽  
Michael Nemec ◽  
Alice Blufstein ◽  
Maria Schubert ◽  
Xiaohui Rausch-Fan ◽  
...  

The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of the most abundant inflammatory mediators in this process and crucially affects the expression of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs and how IL-1β in hPDL-MSCs was changed after applying in vitro low-magnitude orthodontic tensile strains in a static application mode. Hence, primary hPDL-MSCs were stimulated with IL-1β in combination with static tensile strains (STS) with 6% elongation. After 6- and 24 h, MMP-1, MMP-2, TIMP-1 and IL-1β expression levels were measured. STS alone had no influence on the basal expression of investigated target genes, whereas IL-1β caused increased expression of these genes. In combination, they increased the gene and protein expression of MMP-1 and the gene expression of MMP-2 after 24 h. After 6 h, STS reduced IL-1β-induced MMP-1 synthesis and MMP-2 gene expression. IL-1β-induced TIMP-1 gene expression was decreased by STS after 6- and 24-h. At both time points, the IL-1β-induced gene expression of IL-1β was increased. Additionally, this study showed that fetal bovine serum (FBS) caused an overall suppression of IL-1β-induced expression of MMP-1, MMP-2 and TIMP-1. Further, it caused lower or opposite effects of STS on IL-1β-induced expression. These observations suggest that low-magnitude orthodontic tensile strains may favor a more inflammatory and destructive response of hPDL-MSCs when using a static application form and that this response is highly influenced by the presence of FBS in vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashley A. Krull ◽  
Deborah O. Setter ◽  
Tania F. Gendron ◽  
Sybil C. L. Hrstka ◽  
Michael J. Polzin ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yiqin Zhou ◽  
Haobo Li ◽  
Dong Xiang ◽  
Jiahua Shao ◽  
Qiwei Fu ◽  
...  

Abstract Introduction To evaluate the clinical efficacy of arthroscopic therapy with infrapatellar fat pad cell concentrates in treating knee cartilage lesions, we conducted a prospective randomized single-blind clinical study of controlled method. Methods Sixty cases from Shanghai Changzheng Hospital from April 2018 to December 2019 were chosen and randomly divided into 2 groups equally. Patients in the experiment group were treated through knee arthroscopy with knee infrapatellar fat pad cell concentrates containing mesenchymal stromal cells, while patients in the control group were treated through regular knee arthroscopic therapy. VAS and WOMAC scores were assessed at pre-operation, and 6 weeks, 12 weeks, 6 months, and 12 months after intervention. MORCART scores were assessed at pre-operation and 12 months after intervention. Results Twenty-nine cases in the experiment group and 28 cases in the control group were followed up. No significant difference in VAS, WOMAC, and MOCART scores were found between the two groups before surgery (P > 0.05). The WOMAC total and WOMAC function scores of the experiment group were significantly lower than those of the control group 6 months and 12 months after surgery (P < 0.05). The VAS rest and VAS motion scores of the experiment group were found significantly lower than those of the control group 12 months after surgery (P < 0.05). The MOCART scores of the experiment group were found significantly higher compared with the control group 12 months after surgery (P < 0.05). No significant difference in WOMAC stiffness scores were found between the two groups. Conclusions The short-term results of our study are encouraging and demonstrate that knee arthroscopy with infrapatellar fat pad cell concentrates containing mesenchymal stromal cells is safe and provides assistance in reducing pain and improving function in patients with knee cartilage lesions. Trial registration ChiCTR1800015379. Registered on 27 March 2018, http://www.chictr.org.cn/showproj.aspx?proj=25901.


2021 ◽  
Vol 66 (4) ◽  
pp. 5-12
Author(s):  
A. Rastorgueva ◽  
T. Astrelina ◽  
V. Brunchukov ◽  
D. Usupzhanova ◽  
I. Kobzeva ◽  
...  

Background: To compare the results of the use of mesenchymal stromal cells (MSCs) of human gingival mucosa and MSCs of rat gingival mucosa, their conditioned media, and to evaluate their effect on tissue regeneration in local radiation injury (LRI). Material and methods: The study included 120 white male Wistar rats weighing 210 ± 30 g at the age of 8–12 weeks, randomized into 6 groups (20 animals each): control (C), animals did not receive therapy; control with the introduction of culture medium concentrate (CM) three times for 1, 14, 21 days; administration of human gingival mucosa MSCs (HM) at a dose of 2 million per 1 kg three times for 1, 14, 21 days; administration of human gingival mucosa MSCS conditioned medium concentrate (HMCM) at a calculated dose of 2 million cells per 1 kg three times for 1, 14, 21 days; administration of rat gingival mucosal MSCs (RM) at a dose of 2 million cells per 1 kg three times for 1, 14, 21 days; administration of rat gingival mucosal MSCS (RMCM) conditioned medium concentrate at a calculated dose of 2 million cells per 1 kg three times for 1, 14, 21 days. Each laboratory animal was observed 17 times: on 1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112 day after the burn simulation. Histological (hematoxylin-eosin staining) and immunohistochemical (CD31, CD68, VEGF, PGP 9.5, MMP2,9, Collag 1, TIMP 2) studies were performed. LRI was modeled on an X-ray machine at a dose of 110 Gy. MSCs were cultured according to the standard method up to 3–5 passages, the conditioned medium was taken and concentrated 10 times. The immunophenotype of MSCs (CD34, CD45, CD90, CD105, CD73, HLA-DR) and viability (7‑ADD) were determined by flow cytofluorimetry. Results: In a comparative analysis with the control group (C), starting from the 42nd day of the study, a tendency to reduce the area of skin ulcers in animals in all groups was observed, despite the fact that not all days had statistically significant differences. On day 112th, complete healing of skin ulcers in the CM group was observed in 40 % of animals in the HM group – in 60 %, in the HMCM group – in 20 % of animals, in the RMCM group–20 %, and in the C and RM groups there were no animals with a prolonged wound defect. Positive expression of the VEGF marker was observed in groups C and CM on the 28th day and in experimental groups (HM, HMCM, RM, RMCM) on the 112th day. A statistically significant increase in the CD68 marker was observed in groups C, RM, and RMCM, while the remaining groups showed a decrease in the number of macrophages.


2015 ◽  
Vol 24 (23) ◽  
pp. 2822-2840 ◽  
Author(s):  
Lindolfo da Silva Meirelles ◽  
Tathiane Maistro Malta ◽  
Virgínia Mara de Deus Wagatsuma ◽  
Patrícia Viana Bonini Palma ◽  
Amélia Goes Araújo ◽  
...  

Rheumatology ◽  
2009 ◽  
Vol 48 (10) ◽  
pp. 1185-1189 ◽  
Author(s):  
C. Bouffi ◽  
F. Djouad ◽  
M. Mathieu ◽  
D. Noel ◽  
C. Jorgensen

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2581-2581
Author(s):  
Yunlong Shan ◽  
Chongjin Zhong ◽  
Qi Ni ◽  
Mengying Zhang ◽  
Guangji Wang ◽  
...  

2581 Background: Even though immune checkpoint inhibitor (ICI) such as anti-PD-1 mAb has emerged as effective treatment for tumor regression, the response rate of ICI monotherapy in solid tumor is low. Many studies have demonstrated that the efficacy of combination therapy of ICI and anti-angiogenesis was superior to monotherapy. Penpulimab (AK105), a humanized IgG1 mAb that blocks PD-1 binding to PD-L1, engineered to eliminate FcγR binding and ADCC/ADCP completely. Here, we explore a new combined therapy of penpulimab and anlotinib, an oral multi-targeted tyrosine kinase receptor inhibitor. Methods: MC38-hPD-L1 tumor-bearing B-hPD-1 humanized mouse model were conducted to investigate the effects of anlotinib (1 mg/kg, every day, p.o) or penpulimab (5 mg/kg, twice a week, i.p) alone or in combination. Immunofluorescence was applied to elucidate tumor vessel normalization. In vivo imaging was conducted to detect the distribution of AF647-labelled penpulimab after anlotinib treatment. Flow cytometry and other techniques were performed to investigate intratumoral immune cells. Results: After 3-week treatment, immunotherapeutic administration of anlotinib or penpulimab showed moderate inhibition of tumor growth (tumor volume: 66.5% and 58.4% of control group, respectively), while combined treatment of anlotinib with penpulimab significantly decreased tumor volume to 36.5% of control group. Tissue pathological and blood biochemical results showed no significant toxic and side effects. Immunohistochemistry revealed that anlotinib induced tumor vascular normalization, indicated by decreased CD31+ area, increased α-SMA around tumor vessels and reduced GLUT1+ area. Furthermore, anlotinib markedly enhanced the delivery of AF647-penpulimab into tumors. Combining anlotinib with penpulimab also promoted infiltration and activity of anti-tumoral immune cells by reducing the level of immune checkpoint TIM3 and increasing the IFNγ secretion from T cells. Conclusions: Our work provides a strong scientific rationale for the combination therapy of anlotinib and penpulimab to improve tumor microenvironment and immunotherapy, which highlights the clinical potential for this new combined therapy.


Sign in / Sign up

Export Citation Format

Share Document