scholarly journals FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1110 ◽  
Author(s):  
Candida Fasano ◽  
Vittoria Disciglio ◽  
Stefania Bertora ◽  
Martina Lepore Signorile ◽  
Cristiano Simone

Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


1994 ◽  
Vol 4 (4) ◽  
pp. 315-324 ◽  
Author(s):  
Julia M. Corton ◽  
John G. Gillespie ◽  
D.Grahame Hardie

2018 ◽  
Vol 5 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Zsuzsa Bebok ◽  
Lianwu Fu

Abstract Cystic fibrosis (CF) is a life-shortening, genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). The primary cause of CF is reduced CFTR-mediated chloride and bicarbonate transport, due to mutations in CFTR. However, inflammation and persistent infections influence clinical outcome. Cellular stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), referred to here as cellular stress response pathways (SRPs), contribute to the pathology of human disorders. Multiple studies have indicated activation of SRPs in CF tissues. We review our present understanding of how SRPs are activated in CF and their contribution to pathology. We conclude that reduced CFTR function in CF organs establishes a tissue environment in which internal or external insults activate SRPs. SRPs contribute to CF pathogenesis by reducing CFTR expression, enhancing inflammation with consequent tissue remodeling. Understanding the contribution of SRPs to CF pathogenesis is crucial even in the era of CFTR “modulators” that are designed to potentiate, correct or amplify CFTR function, since there is an urgent need for supportive treatments. Importantly, CF patients with established pathology could benefit from the targeted use of drugs that modulate SRPs to reduce the symptoms.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3587-3587
Author(s):  
Laurensia Yuniati ◽  
Laurens T van der Meer ◽  
Geert JV Poelmans ◽  
Sander AL Palit ◽  
Caroline Rodenbach ◽  
...  

Abstract During the course of tumorigenesis and subsequent chemotherapeutic intervention, cancer cells experience various kinds of physiological stress, including hypoxia and nutrient limitation. Escaping cell death is one of the routes utilized by these malignant cells to allow continued growth and to acquire therapy resistance. B-cell Translocation Gene 1 (BTG1) is recurrently affected by genomic deletion in pediatric acute lymphoblastic leukemia (ALL) patients. Here, we define BTG1 as a mediator of the cellular stress response. When challenged with cellular stressors, such as amino acid or glucose deprivation as well as drug induced Endoplasmic Reticulum (ER) stress, mouse embryonic fibroblasts (MEFs) lacking Btg1 expression show a 20-30% increased survival rate relative to wildtype cells (Figure 1). Similarly, bone marrow B-cell progenitors isolated from Btg1 knockout mice are more resistant to Asparaginase (ASNase), a drug widely used in the treatment of ALL. Activating Transcription Factor 4 (ATF4) is the master regulator of the stress response pathway that is activated upon nutrient limitation and ER stress. Importantly, loss of ATF4 function results in an enhanced survival almost identical to the effects we measured in Btg1 knockout cells. While ATF4 protein expression itself is not different between the genotypes, gene expression analysis revealed that the induction of a subset of ATF4 target genes (Ddit3, Atf3, Trib3, Gadd34, and Ndrg1) is significantly reduced in Btg1 knockout cells. As these genes are effectors of the apoptosis machinery, increased survival in the Btg1 knockout cells may reflect an attenuation of ATF4 function. We hypothesized that BTG1 complexes with ATF4 to modify its function by recruiting Protein Arginine Methyl Transferase 1 (PRMT1). This enzyme, known to cooperate with BTG1, marks its substrate proteins with a post translational modification but has not been previously implicated in the regulation of ATF4 activity. Co-immunoprecipitation experiments indeed revealed a direct interaction between BTG1 and ATF4. We used purified proteins in an in vitro methylation assay to show that ATF4 is directly methylated by PRMT1 on arginine residue 239. Expression of the mutant ATF4 R239K, which cannot be methylated, in an ATF4 knockout background resulted in reduced transcriptional activity in response to stress relative to wildtype ATF4. In addition, we aimed to mimic the effect of BTG1 loss on the regulation ATF4 function by the addition of PRMT1 inhibitor AMI-1. Treatment of cells with this selective inhibitor faithfully recapitulates BTG1 loss by attenuating the induction of ATF4 target genes upon stress. Our findings establish the interplay of BTG1-ATF4-PRMT1 as a part of the cellular stress response. Taken together, our data indicate that BTG1 is necessary to maintain normal ATF4 function under cellular stress conditions. Loss of BTG1 expression, as it occurs during lymphoid leukemia development, may therefore provide a selective advantage for leukemic cells to survive and to resist treatment at a later stage of disease. Figure 1 Btg1 is required for survival under cellular stress. Wildtype (WT) and Btg1-/- MEFs were challenged with different treatments that cause nutrient limitation and ER stress. A MTT based assay was used to study the metabolic activity of the cells as a measure of viability. The relative cell survival as compared to untreated cells (set as 100%) is shown. Bars represent average data from four independent experiments ± SEM. 2-tailed t-test was used to test for significance: * p<0.05, ** p<0.01. Figure 1. Btg1 is required for survival under cellular stress. Wildtype (WT) and Btg1-/- MEFs were challenged with different treatments that cause nutrient limitation and ER stress. A MTT based assay was used to study the metabolic activity of the cells as a measure of viability. The relative cell survival as compared to untreated cells (set as 100%) is shown. Bars represent average data from four independent experiments ± SEM. 2-tailed t-test was used to test for significance: * p<0.05, ** p<0.01. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 667-667
Author(s):  
Bradford Hull ◽  
George Sutphin

Abstract Cellular stress is a fundamental component of age-associated disease. Cells experience many forms of stress (oxidative, heavy metal, etc.), and as we age the burden of stress and resulting damage increases while our cells’ ability to deal with the consequences becomes diminished due to dysregulation of cellular stress response pathways. By understanding how cells respond to stress we aim to slow age-associated deterioration and develop treatment targets for age-associated disease. The majority of past work has focused on understanding responses to individual stressors. In contrast, how pathology and stress responses differ in the presence of multiple stressors is relatively unknown; we investigate that here. We cultured worms on agar plates with different combinations of arsenic, copper, and DTT (which create oxidative/proteotoxic, heavy metal, and endoplasmic reticulum (ER) stress, respectively) at doses that result in 20% lifespan reduction individually and measured the effect on lifespan. We found that arsenic/copper and arsenic/DTT combinations created additive lifespan reductions while the copper/DTT combination created an antagonistic lifespan reduction when compared to controls (p&lt;0.05). This antagonistic toxicity suggests an interaction either between the mechanisms of toxicity or the cellular response to copper and DTT. We are now evaluating the impact of copper and DTT individually and in combination on unfolded protein and heavy metal response pathways to understand the underlying mechanism of the interaction. Additionally, we are continuing to screen stressors to identify combinations that cause non-additive (synergistic or antagonistic) toxicity to build a comprehensive model of the genetic stress response network in C. elegans.


2021 ◽  
Vol 22 (15) ◽  
pp. 8146
Author(s):  
Garrett Dalton Smedley ◽  
Keenan E. Walker ◽  
Shauna H. Yuan

Neurodegenerative diseases are an ever-increasing problem for the rapidly aging population. Despite this, our understanding of how these neurodegenerative diseases develop and progress, is in most cases, rudimentary. Protein kinase RNA (PKR)-like ER kinase (PERK) comprises one of three unfolded protein response pathways in which cells attempt to manage cellular stress. However, because of its role in the cellular stress response and the far-reaching implications of this pathway, error within the PERK pathway has been shown to lead to a variety of pathologies. Genetic and clinical studies show a correlation between failure of the PERK pathway in neural cells and the development of neurodegeneration, but the wide array of methodology of these studies is presenting conflicting narratives about the role of PERK in these affected systems. Because of the connection between PERK and pathology, PERK has become a high value target of study for understanding neurodegenerative diseases and potentially how to treat them. Here, we present a review of the literature indexed in PubMed of the PERK pathway and some of the complexities involved in investigating the protein’s role in the development of neurodegenerative diseases as well as how it may act as a target for therapeutics.


2018 ◽  
Author(s):  
Eric M. Erkenbrack ◽  
Jamie D. Maziarz ◽  
Oliver W. Griffith ◽  
Cong Liang ◽  
Arun R. Chavan ◽  
...  

AbstractAmong animal species, cell types vary greatly in terms of number and kind. The broad range of number of cell types among species suggests that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms giving rise to novel cell types, however, are poorly understood. Here we show that a novel cell type of eutherian mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESF, the majority of decidual core regulatory genes respond to decidualizing signals, but do not regulate decidual effector genes. Rather, in opossum ESF, decidual transcription factors function in apoptotic and oxidative stress response. We propose that the rewiring of cellular stress responses could be a general mechanism for the evolution of novel cell types.


2021 ◽  
Author(s):  
Haiyan An ◽  
Gioana Litscher ◽  
Wenbin Wei ◽  
Naruaki Watanabe ◽  
Tadafumi Hashimoto ◽  
...  

AbstractFormation of cytoplasmic RNA-protein structures called stress granules (SGs) is a highly conserved cellular response to stress. Abnormal metabolism of SGs may contribute to the pathogenesis of (neuro)degenerative diseases such as amyotrophic lateral sclerosis (ALS). Many SG proteins are affected by mutations causative of these conditions, including fused in sarcoma (FUS). Mutant FUS variants have high affinity to SGs and also spontaneously form de novo cytoplasmic RNA granules. Mutant FUS-containing assemblies (mFAs), often called “pathological SGs”, are proposed to play a role in ALS-FUS pathogenesis. However, global structural differences between mFAs and physiological SGs remain largely unknown, therefore it is unclear whether and how mFAs may affect cellular stress responses. Here we used affinity purification to characterise the protein and RNA composition of normal SGs and mFAs purified from stressed cells. Comparison of the SG and mFA proteomes revealed that proteasome subunits and certain nucleocytoplasmic transport factors are depleted from mFAs, whereas translation elongation, mRNA surveillance and splicing factors as well as mitochondrial proteins are enriched in mFAs, as compared to SGs. Validation experiments for a hit from our analysis, a splicing factor hnRNPA3, confirmed its RNA-dependent sequestration into mFAs in cells and into pathological FUS inclusions in a FUS transgenic mouse model. Furthermore, silencing of the Drosophila hnRNPA3 ortholog dramatically enhanced FUS toxicity in transgenic flies. Comparative transcriptomic analysis of SGs and mFAs revealed that mFAs recruit a significantly less diverse spectrum of RNAs, including reduced recruitment of transcripts encoding proteins involved in protein translation, DNA damage response, and apoptotic signalling. However mFAs abnormally sequester certain mRNAs encoding proteins involved in stress signalling cascades. Overall, our study establishes molecular differences between physiological SGs and mFAs and identifies the spectrum of proteins, RNAs and respective cellular pathways affected by mFAs in stressed cells. In conclusion, we show that mFAs are compositionally distinct from SGs and that they cannot fully substitute for SG functions while gaining novel, potentially toxic functions in cellular stress response. Results of our study support a pathogenic role for stress-induced cytoplasmic FUS assemblies in ALS-FUS.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1781-1781
Author(s):  
Lawrence B. Gardner

Abstract Several common β globin gene mutations found in thalassemia are thought to promote rapid degradation of the aberrant mRNA through a specific mechanism termed nonsense mediated RNA decay (NMD). NMD, elicited through mutations leading to premature termination codons, is thought to be responsible not only for the degradation of the β globin PTC 39 mutation, responsible for >90% of thalassemia in Sardinia, but also for the degradation of 30% of all known human mutations and up to 10% of the genome. However, because NMD has been thought of as a constitutive and not a regulated pathway, the potential role of NMD in the dynamic regulation of gene expression has not been well explored. We have determined that NMD is inhibited in hypoxic cells. This hypoxic inhibition of NMD significantly prolongs the half-life of multiple mRNAs degraded by NMD, including the β globin PTC 39 mutation. We have also identified several additional mRNAs whose stabilities are significantly (>2 fold) 1. Increased when Rent1, an RNA helicase necessary for NMD is silenced 2. Decreased when Rent1 is over-expressed and 3. Increased in hypoxic cells when NMD is inhibited. These include the mRNAs that are integral for the cellular response to multiple stresses found in thalassemia, including hypoxic stress. Indeed, we observed that the cellular stress response is augmented when NMD is inhibited. The central component for many cellular stress responses is the phosphorylation of a translation factor, eIF2α. We and others have demonstrated that eIF2α is phosphorylated in hypoxic cells via the kinase PERK. Phosphorylation of eIF2α leads to the suppression of protein synthesis and the translational and transcriptional up-regulation of stress response genes. We hypothesized that phosphorylation of eIF2α was also responsible for the hypoxic inhibition of NMD. Indeed, when we used cells generated from mice in which wild-type eIF2α has been replaced by an eIF2α that cannot be phosphorylated, we found that hypoxic inhibition of NMD did not occur, demonstrating that is eIF2α phosphorylation is necessary for hypoxic inhibition of NMD. Degradation of NMD targets occurs in cytoplasmic processing bodies, which contain many of the enzymes necessary for mRNA catabolism. We noted that a distinct type of mRNA containing body, termed stress bodies, which do not have the capacity for RNA decay, are induced in hypoxic cells. This formation is dependent on PERK phosphorylation of eIF2α. While there are several potential mechanism by which hypoxic phosphorylation of eIF2α could inhibit NMD, our preliminary data suggests a model in which NMD targets are sequestered in cytoplasmic stress granules in hypoxic cells, thus excluding them from cytoplasmic processing bodies. Thus our studies reveal a novel form of gene regulation in hypoxic cells, regulation of NMD via phosphorylation of eIF2α. This finding has potential significance in many disease states, but particularly in thalassemia, where many of the stresses which phosphorylate eIF2α occur, and where the stress response and regulation of mutated β globin mRNAs may be particularly important.


Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders such as Parkinson&rsquo;s disease (PD), Alzheimer&rsquo;s disease (AD), Amyloidal lateral sclerosis (ALS), and Huntington disease (HD) are the most concerned disorders due to the lack of effective therapeutics and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, yet they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and ER-stress, which combats with stress conditions, but the overwhelming cellular stress response induces cell damage. Small molecules such as flavonoids could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the mechanistic ways of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document