scholarly journals The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1280 ◽  
Author(s):  
Alessandro Maglione ◽  
Simona Rolla ◽  
Stefania Federica De Mercanti ◽  
Santina Cutrupi ◽  
Marinella Clerico

Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikrant Rai ◽  
Megan B. Wood ◽  
Hao Feng ◽  
Nathan. M. Schabla ◽  
Shu Tu ◽  
...  

Abstract Cells of the immune system are present in the adult cochlea and respond to damage caused by noise exposure. However, the types of immune cells involved and their locations within the cochlea are unclear. We used flow cytometry and immunostaining to reveal the heterogeneity of the immune cells in the cochlea and validated the presence of immune cell gene expression by analyzing existing single-cell RNA-sequencing (scRNAseq) data. We demonstrate that cell types of both the innate and adaptive immune system are present in the cochlea. In response to noise damage, immune cells increase in number. B, T, NK, and myeloid cells (macrophages and neutrophils) are the predominant immune cells present. Interestingly, immune cells appear to respond to noise damage by infiltrating the organ of Corti. Our studies highlight the need to further understand the role of these immune cells within the cochlea after noise exposure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alecia M. Blaszczak ◽  
Anahita Jalilvand ◽  
Willa A. Hsueh

The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammed M. Almutairi ◽  
Farzane Sivandzade ◽  
Thamer H. Albekairi ◽  
Faleh Alqahtani ◽  
Luca Cucullo

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.


2020 ◽  
Author(s):  
David A Swan ◽  
Morgane Rolland ◽  
Joshua Herbeck ◽  
Joshua T Schiffer ◽  
Daniel B Reeves

AbstractModern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic (wi-phy) models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The most parsimonious and accurate model required no positive selection, suggesting that the host adaptive immune system reduces viral load, but does not drive observed viral evolution. Rather, random genetic drift primarily dictates fitness changes. These results hold during early infection, and even during chronic infection when selection has been observed, viral fitness distributions are not largely different from in vitro distributions that emerge without adaptive immunity. These results highlight how phylogenetic inference must consider complex viral and immune-cell population dynamics to gain accurate mechanistic insights.One sentence summaryThrough the lens of a unified population and phylodynamic model, current data show the first wave of HIV mutations are not driven by selection by the adaptive immune system.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1314 ◽  
Author(s):  
Sen ◽  
Almuslehi ◽  
Gyengesi ◽  
Myers ◽  
Shortland ◽  
...  

Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.


2019 ◽  
Vol 11 ◽  
pp. 251584141986812
Author(s):  
Tanima Bose

Pemphigoid disease is classified according to the phenotypical location of the disease and the presence of different types of antibodies. The ocular distribution of pemphigoid mainly occurs in patients with bullous pemphigoid and mucous membrane pemphigoid. Several immune cells, including the cells of the innate immune system (neutrophils and γδ T cells) and the adaptive immune system (T and B cells), are involved in pemphigoid disease. The treatment of pemphigoid is still wide-ranging, and the most utilized treatment is the use of immunosuppressants and corticosteroids. In this scenario, it is absolutely important to screen the immune cells that are involved in this group of diseases and to determine if a targeted treatment approach is plausible. In conclusion, this review will identify some newer treatment possibilities for the whole spectrum of pemphigoid diseases.


2019 ◽  
Vol 5 (1) ◽  
pp. 205521731881924 ◽  
Author(s):  
Jeffrey A Cohen ◽  
Amit Bar-Or ◽  
Bruce A C Cree ◽  
Yang Mao-Draayer ◽  
May H Han ◽  
...  

Background Fingolimod is a sphingosine 1-phosphate receptor modulator for the treatment of patients with relapsing forms of multiple sclerosis (RMS). Fingolimod sequesters lymphocytes within lymphoid tissue thereby reducing the counts of circulating lymphocytes. However, fingolimod’s effects on the innate and adaptive components of the immune system are incompletely understood. Objective The FLUENT study will investigate temporal changes in circulating immune cell subsets in patients with RMS treated with fingolimod. Secondary objectives include examining the association between anti-John Cunningham virus (JCV) antibody status/index and phenotypic changes in innate and T and B cell subsets in patients on fingolimod therapy, and the association between serum neurofilament levels and clinical outcomes. Methods FLUENT is a prospective, multicenter, two-cohort, nonrandomized, open-label Phase IV study. Cohort 1 will include fingolimod-naïve patients and Cohort 2 will include patients who have received fingolimod 0.5 mg/day continuously for ≥2 years. Changes in the cellular components of the innate and adaptive immune system will be characterized over 12 months. Results The study is ongoing. Conclusion FLUENT may provide evidence for the use of immunologic profiling in predicting efficacy and risk of infection in patients with RMS treated with fingolimod.


2010 ◽  
Vol 10 (2) ◽  
pp. 203-207 ◽  
Author(s):  
David G Harrison ◽  
Antony Vinh ◽  
Heinrich Lob ◽  
Meena S Madhur

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Chang Xia ◽  
Xiaoquan Rao ◽  
Jixin Zhong

Although a critical role of adaptive immune system has been confirmed in driving local and systemic inflammation in type 2 diabetes and promoting insulin resistance, the underlying mechanism is not completely understood. Inflammatory regulation has been focused on innate immunity especially macrophage for a long time, while increasing evidence suggests T cells are crucial for the development of metabolic inflammation and insulin resistance since 2009. There was growing evidence supporting the critical implication of T cells in the pathogenesis of type 2 diabetes. We will discuss the available effect of T cells subsets in adaptive immune system associated with the procession of T2DM, which may unveil several potential strategies that could provide successful therapies in the future.


2012 ◽  
Vol 22 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Jan Bauer ◽  
Annamaria Vezzani ◽  
Christian G. Bien

Sign in / Sign up

Export Citation Format

Share Document