scholarly journals The FLUENT study design: investigating immune cell subset and neurofilament changes in patients with relapsing multiple sclerosis treated with fingolimod

2019 ◽  
Vol 5 (1) ◽  
pp. 205521731881924 ◽  
Author(s):  
Jeffrey A Cohen ◽  
Amit Bar-Or ◽  
Bruce A C Cree ◽  
Yang Mao-Draayer ◽  
May H Han ◽  
...  

Background Fingolimod is a sphingosine 1-phosphate receptor modulator for the treatment of patients with relapsing forms of multiple sclerosis (RMS). Fingolimod sequesters lymphocytes within lymphoid tissue thereby reducing the counts of circulating lymphocytes. However, fingolimod’s effects on the innate and adaptive components of the immune system are incompletely understood. Objective The FLUENT study will investigate temporal changes in circulating immune cell subsets in patients with RMS treated with fingolimod. Secondary objectives include examining the association between anti-John Cunningham virus (JCV) antibody status/index and phenotypic changes in innate and T and B cell subsets in patients on fingolimod therapy, and the association between serum neurofilament levels and clinical outcomes. Methods FLUENT is a prospective, multicenter, two-cohort, nonrandomized, open-label Phase IV study. Cohort 1 will include fingolimod-naïve patients and Cohort 2 will include patients who have received fingolimod 0.5 mg/day continuously for ≥2 years. Changes in the cellular components of the innate and adaptive immune system will be characterized over 12 months. Results The study is ongoing. Conclusion FLUENT may provide evidence for the use of immunologic profiling in predicting efficacy and risk of infection in patients with RMS treated with fingolimod.

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1280 ◽  
Author(s):  
Alessandro Maglione ◽  
Simona Rolla ◽  
Stefania Federica De Mercanti ◽  
Santina Cutrupi ◽  
Marinella Clerico

Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS.


2020 ◽  
Author(s):  
David A Swan ◽  
Morgane Rolland ◽  
Joshua Herbeck ◽  
Joshua T Schiffer ◽  
Daniel B Reeves

AbstractModern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic (wi-phy) models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The most parsimonious and accurate model required no positive selection, suggesting that the host adaptive immune system reduces viral load, but does not drive observed viral evolution. Rather, random genetic drift primarily dictates fitness changes. These results hold during early infection, and even during chronic infection when selection has been observed, viral fitness distributions are not largely different from in vitro distributions that emerge without adaptive immunity. These results highlight how phylogenetic inference must consider complex viral and immune-cell population dynamics to gain accurate mechanistic insights.One sentence summaryThrough the lens of a unified population and phylodynamic model, current data show the first wave of HIV mutations are not driven by selection by the adaptive immune system.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1314 ◽  
Author(s):  
Sen ◽  
Almuslehi ◽  
Gyengesi ◽  
Myers ◽  
Shortland ◽  
...  

Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 88-88 ◽  
Author(s):  
Manuel M. Hidalgo ◽  
Ron Epelbaum ◽  
Valeriya Semenisty ◽  
Ravit Geva ◽  
Talia Golan ◽  
...  

88 Background: BL-8040 is a novel CXCR4 antagonist being developed for multiple oncology indications. Preclinical studies demonstrated that BL-8040 increases the number of immune cells in peripheral blood and promotes CD8+ T cell infiltration into orthotropic pancreatic mouse tumors, reducing tumor load. BL-8040 is being evaluated in a Phase 2a, multicenter, open label trial in patients with metastatic pancreatic cancer (the COMBAT study). Patients are undergoing a 5-day period of monotherapy in which they receive daily doses of BL-8040, followed by 21-day cycles in which patients receive one dose of pembrolizumab and 3 doses/week of BL-8040 until disease progression or discontinuation. To date, 32 patients have been enrolled. Methods: On Day 1 and Day 5, blood samples were taken at pre- and post-dosing, to evaluate peripheral immune cell subset frequency by flow cytometry. In addition, core biopsies were taken from liver metastases, where possible, to assess immune cell infiltration into tumors and the tumor microenvironment (TME). Results: Here we present interim PD biomarker data from the BL-8040 monotherapy portion of the trial. Flow cytometry shows that BL-8040 monotherapy caused an approximately two-fold reduction in frequency of peripheral T regulatory cells, but had no effect on the frequency of T cells, NKT cells or cell populations that contain B cells (CD3- CD56-). Additionally, BL-8040 remained bound to CXCR4 on peripheral immune cells throughout the period of monotherapy. Analysis of available biopsies (N = 7) shows an up to 15-fold increase in the CD3+ population, and up to two-fold increase of CD8+ cells, in the tumor periphery and TME of 43% (3/7) of the patients after five days of BL-8040 monotherapy compared to baseline. Conclusions: In summary, the PD biomarker results in humans support the proposed mechanism of action for BL-8040 that was based on preclinical mouse models. Analysis of tumor biopsies is ongoing, with an emphasis on investigating the effects of BL-8040 on tumor-resident immune cells and the TME. Clinical trial information: NCT02826486.


2008 ◽  
Vol 29 (1) ◽  
pp. 137-143 ◽  
Author(s):  
Matthew C Loftspring ◽  
Jeremiah McDole ◽  
Aigang Lu ◽  
Joseph F Clark ◽  
Aaron J Johnson

Intracerebral hemorrhage (ICH) is a stroke subtype with high rates of mortality and morbidity. The immune system, particularly complement and cytokine signaling, has been implicated in brain injury after ICH. However, the cellular immunology associated with ICH has been understudied. In this report, we use flow cytometry to quantitatively profile immune cell populations that infiltrate the brain 1 and 4 days post-ICH. At 1 day CD45hi GR-1+ cells were increased 2.0-fold compared with saline controls ( P ≤ 0.05); however, we did not observe changes in any other cell populations analyzed. At 4 days ICH mice presented with a 2.4-fold increase in CD45hi cells, a 1.9-fold increase in CD45hi GR-1 cells, a 3.4-fold increase in CD45hi GR-1+ cells, and most notably, a 1.7-fold increase in CD4+ cells ( P ≤ 0.05 for all groups), compared with control mice. We did not observe changes in the numbers of CD8+ cells or CD45lo cells ( P = 0.43 and 0.49, respectively). Thus, we have shown the first use of flow cytometry to analyze leukocyte infiltration in response to ICH. Our finding of a CD4 T-cell infiltrate is novel and suggests a role for the adaptive immune system in the response to ICH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evelien G. G. Sprenkeler ◽  
Carla Guenther ◽  
Imrul Faisal ◽  
Taco W. Kuijpers ◽  
Susanna C. Fagerholm

Megakaryoblastic leukemia 1 (MKL1) deficiency is one of the most recently discovered primary immunodeficiencies (PIDs) caused by cytoskeletal abnormalities. These immunological “actinopathies” primarily affect hematopoietic cells, resulting in defects in both the innate immune system (phagocyte defects) and adaptive immune system (T-cell and B-cell defects). MKL1 is a transcriptional coactivator that operates together with serum response factor (SRF) to regulate gene transcription. The MKL/SRF pathway has been originally described to have important functions in actin regulation in cells. Recent results indicate that MKL1 also has very important roles in immune cells, and that MKL1 deficiency results in an immunodeficiency affecting the migration and function of primarily myeloid cells such as neutrophils. Interestingly, several actinopathies are caused by mutations in genes which are recognized MKL(1/2)-dependent SRF-target genes, namely ACTB, WIPF1, WDR1, and MSN. Here we summarize these and related (ARPC1B) actinopathies and their effects on immune cell function, especially focusing on their effects on leukocyte adhesion and migration. Furthermore, we summarize recent therapeutic efforts targeting the MKL/SRF pathway in disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quan Zhuang ◽  
Hao Li ◽  
Bo Peng ◽  
Yang Liu ◽  
Ying Zhang ◽  
...  

Background: Kidney transplantation (KTx) is a preeminent treatment for end-stage renal disease (ESRD). After the application of immunosuppressants (IS), renal allograft recipients could reach a state called accommodation which means they are neither rejected nor infected. This study aimed to describe the details of this immune accommodation and reveal a novel mechanism of IS on immune cell subpopulations.Methods: We analyzed multiple cell subgroups and their gene expression of peripheral T, B, myeloid, and NK cells from renal allograft recipients with accommodation and healthy control (HC) by single-cell transcriptomics sequencing (scRNA-seq) and flow cytometry.Results: A total of 8,272 cells were isolated and sequenced from three individuals, including 2,758 cells from HC, 2,550 cells from ESRD patient, and 2,964 cells from KTx patient, as well as 396 immune response–related genes were detected during sequencing. 5 T-cell, 4 NK-cell, 5 myeloid, and 4 B-cell clusters were defined. Among them, a B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) of renal transplant recipients with accommodation was significantly lower than that of HC and verified by flow cytometry, and this B-cell subset showed an activated potential because of its high expression of CD127. Furthermore, we found that IL32 might be the key cytokine to induce the differentiation of this B-cell cluster.Conclusion: We found a novel B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) which was inhibited and decreased in renal allograft recipients with accommodation. This study might reveal the effect of commonly used IS in clinical practice on B-cell subsets and related mechanism.


2021 ◽  
Author(s):  
◽  
Carl Beyers

<p>Multiple sclerosis (MS) is an immune-mediated neurodegenerative disorder that is distinguished by neuroinflammation and demyelination. MS is severely debilitating and remains the most common cause of disability arising from non-traumatic brain and CNS damage in adults. In its progressive phase there are no effective treatments, so new therapy options are an urgent research priority. Extensive work has been done on the role of the adaptive immune system in contributing to the disease pathology and on the effects of therapies targeting lymphocytes in relapsing-remitting MS. Fewer studies have examined innate immune cells in people with progressive MS. This thesis addresses that gap by profiling monocyte phenotype and function in response to new and repurposed drugs that may provide benefit in progressive MS. This was achieved by modelling the drugs’ effects in vitro using peripheral blood cells from people with progressive MS and healthy subjects.   Clozapine is an atypical antipsychotic with broad receptor affinity that is primarily used to treat refractory schizophrenia. In addition to is antipsychotic action through dopamine receptor (DR) D2, its broad neuro-immune receptor affinity is thought to dampen inflammatory responses in the CNS. This thesis highlights clozapine’s anti-inflammatory effect by demonstrating a reduction in the expression of pro-inflammatory cytokines that are associated with MS pathology in treated monocytes. Clozapine also induced a significant increase in the expression of D1. We observed that D1 expression changes happened alongside alterations to immune cell activity and that MS participant monocytes were much more susceptible to DR expression changes compared to healthy people. Together this data substantiates clozapine as a potential treatment for progressive disease.   MIS416 is a large, non-soluble microparticle suspension that induces nuclear factor kappa B (NFB) dependent cytokine induction. We show here that monocytes are key cytokine responder cells to MIS416 and explore the molecular mechanism by demonstrating its effects on transcription factor activity. Our data showing increased production of cytokines by MIS416 suggests a route of treatment efficacy through tolerisation mechanisms, and by reducing inflammation through upregulation of anti-inflammatory cytokines and negative feedback from pro-inflammatory cytokine release. Furthermore, we demonstrate how disease heterogeneity, phenotype, and genotype could significantly affect drug response outcomes in patients who received the drug as part of a phase 2 clinical trial.   Much of this work was done using new spectral cytometer technology. Its use allowed for the novel approach that enabled the subtraction of autofluorescent noise from out data, and we demonstrate its efficient functioning, ease of use, and utility in acquiring high dimensional datasets. The resulting large dataset allowed us the opportunity to interrogate it using bioinformatics tools, and we show their utility as adjunct tools to conventional methods of gating and statistical analysis. These analyses help demonstrate that monocytes are a heterogenous immune cell subset that is functionally distinct in people with progressive MS when compared to monocytes from healthy individuals.</p>


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3010-3010
Author(s):  
Georg Martin Haag ◽  
Niels Halama ◽  
Christoph Springfeld ◽  
Barbara Grün ◽  
Leonidas Apostolidis ◽  
...  

3010 Background: Checkpoint inhibition using PD-1/PD-L1 inhibitors does not show clinically relevant activity in MSS/pMMR (Mismatch Repair Proficient) colorectal cancer. Previous work showed that inhibition of CCR5 (C-C chemokine receptor type 5) leads to a macrophage re-polarization towards M1 macrophages within the tumor microenvironment which directly affects immune cell infiltrates. The current phase I trial explores a combined modification of the innate immune system (by CCR 5 blockade) and the adaptive immune system (by PD-1 inhibition) in the treatment of MSS CRC. Methods: 20 patients with metastatic MSS/pMMR colorectal cancer with failure of fluoropyrimidines, oxaliplatin, irinotecan, VEGF antibodies and EGFR antibodies (in ras WT patients) received pembrolizumab 200 mg q21d and maraviroc 300 mg bid cont. for 8 cycles, followed by pembrolizumab monotherapy for a maximum of 24 additional cycles. Imaging was performed every nine weeks (RECIST and irRECIST criteria). Primary endpoint was the feasibility rate (rate of patients receiving the protocol treatment during the core treatment without special event: treatment-related Grade ≥ 3 immune-related abnormalities, treatment-related Grade ≥ 4 AEs or any toxicity-related premature withdrawal of treatment). Secondary endpoints included safety/toxicity, ORR, PFS and OS. Results: 20 patients were enrolled. The median number of applied cycles was 3.5 for pembrolizumab and 3.5 for maraviroc. Two patients completed the core treatment period with pembrolizumab and started maintenance treatment. The feasibility rate was 94.7% (90% CI 77.4 to 99.7%), with one patient experiencing a special event. Except this grade 4 event (hyperglycemia) no ≥ 3 treatment-related toxicities were observed. According to irRECIST criteria one patient showed a partial response and one a stable disease as best response, resulting in an irDCR of 10.5%. Median PFS according to irRECIST was 2 months (CI 95%, 2 to 3), median OS 9 months (CI 95%, 6 to 20). Conclusions: Therapy with pembrolizumab and maraviroc was feasible and showed a beneficial toxicity pattern. Clinical activity in MSS CRC patients was limited, however prolonged disease stabilizations were observed in single patients and overall survival was higher than expected in this heavily pretreated population. Clinical trial information: NCT03274804 .


Sign in / Sign up

Export Citation Format

Share Document