scholarly journals Tensin-3 Regulates Integrin-Mediated Proliferation and Differentiation of Tonsil-Derived Mesenchymal Stem Cells

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 89
Author(s):  
Gi Cheol Park ◽  
Hyung-Sik Kim ◽  
Hee-Young Park ◽  
Yoojin Seo ◽  
Ji Min Kim ◽  
...  

Human palatine tonsils are potential tissue source of multipotent mesenchymal stem cells (MSCs). The proliferation rate of palatine tonsil-derived MSCs (TMSCs) is far higher than that of bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs (ADSCs). In our previous study, we had found through DNA microarray analysis that tensin-3 (TNS3), a type of focal adhesion protein, was more highly expressed in TMSCs than in both BMSCs and ADSCs. Here, the role of TNS3 in TMSCs and its relationship with integrin were investigated. TNS3 expression was significantly elevated in TMSCs than in other cell types. Cell growth curves revealed a significant decrease in the proliferation and migration of TMSCs treated with siRNA for TNS3 (siTNS3). siTNS3 treatment upregulated p16 and p21 levels and downregulated SOX2 expression and focal adhesion kinase, protein kinase B, and c-Jun N-terminal kinase phosphorylation. siTNS3 transfection significantly reduced adipogenic differentiation of TMSCs and slightly decreased osteogenic and chondrogenic differentiation. Furthermore, TNS3 inhibition reduced active integrin beta-1 (ITGβ1) expression, while total ITGβ1 expression was not affected. Inhibition of ITGβ1 expression in TMSCs by siRNA showed similar results observed in TNS3 inhibition. Thus, TNS3 may play an important role in TMSC proliferation and differentiation by regulating active ITGβ1 expression.

2019 ◽  
Vol 8 (8) ◽  
pp. 397-404 ◽  
Author(s):  
Liza Osagie-Clouard ◽  
Anita Sanghani-Kerai ◽  
Melanie Coathup ◽  
Richard Meeson ◽  
Timothy Briggs ◽  
...  

Objectives Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1). Methods Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34. Results Juvenile and adult MSCs demonstrated significantly increased osteogenic and adipogenic differentiation and superior migration towards SDF-1 compared with OVX groups; this was the case for AdMSCs and bMSCs equally. Parathyroid hormone (PTH) increased parameters of osteogenic differentiation and migration to SDF-1. This was significant for all cell types, although it had the most significant effect on cells derived from OVX animals. bMSCs from all groups showed increased mineralization and migration to SDF-1 compared with AdMSCs. Conclusion Juvenile MSCs showed significantly greater migration to SDF-1 and significantly greater osteogenic and adipogenic differentiation compared with cells from osteopenic rats; this was true for bMSCs and AdMSCs. The addition of PTH increased these characteristics, with the most significant effect on cells derived from OVX animals, further illustrating possible clinical application of both PTH and MSCs in bone regenerative therapies. Cite this article:L. Osagie-Clouard, A. Sanghani-Kerai, M. Coathup, R. Meeson, T. Briggs, G. Blunn. The influence of parathyroid hormone 1-34 on the osteogenic characteristics of adipose- and bone-marrow-derived mesenchymal stem cells from juvenile and ovarectomized rats. Bone Joint Res 2019;8:397–404. DOI: 10.1302/2046-3758.88.BJR-2019-0018.R1.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 9117-9125
Author(s):  
Ting Ma ◽  
Xi-Yuan Ge ◽  
Ke-Yi Hao ◽  
Xi Jiang ◽  
Yan Zheng ◽  
...  

Titanium discs with simple 3,4-dihydroxy-l-phenylalanine coating enhanced BM-MSC adhesion, spreading, proliferation and differentiation, and upregulated expression of genes involved in focal adhesion in vitro.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Boris Popov ◽  
Nikolai Petrov ◽  
Vladimir Ryabov ◽  
Igor Evsyukov

An effective regulation of quiescence plays a key role in the differentiation, plasticity, and prevention of stem cells from becoming malignant. The state of quiescence is being controlled by the pRb family proteins which show overlapping functions in cell cycle regulation; however, their roles in controlling the proliferation of mesenchymal stem cells (MSCs) remain to be understood. This study investigated the regulation of transient quiescence using growth curves, proliferation assay, the cytometric evaluation of cell cycle, Western blotting, and the electromobility gel shift assay (EMSA) on synchronized MSCs of the C3H10Т1/2 and control cells with different statuses of pRb proteins. It has been found that functional steady-state level of p130 but not pRb plays a critical role for entering, exiting, and maintenance of transient quiescence in multipotent mesenchymal stem cells.


2009 ◽  
Vol 21 (1) ◽  
pp. 237 ◽  
Author(s):  
D. Kim ◽  
A. J. Maki ◽  
H.-J. Kong ◽  
E. Monaco ◽  
M. Bionaz ◽  
...  

Adipose tissue presents an appealing alternative to bone marrow as a source of mesenchymal stem cells (MSC). However, in order to enhance cell proliferation and differentiation, 3-dimensional (3-D) culture may be required. A 3-D culture has benefits due to its more in vivo-like environment. Further, to form a functional tissue, a scaffold material is required to ensure proper shape and allow for efficient delivery of nutrients and growth factors. Alginate, a resorbable hydrogel, is a potential injectable scaffold for fat and bone tissue engineering due to its high biocompatibility, gelation with calcium and slow dissolution in a physiologic environment. In the present study, we examined the viability, gene expression and morphology of MSC, isolated from porcine adipose (ADSC) and bone marrow (BMSC), during osteogenic and adipogenic differentiation in a 3D alginate hydrogel environment for 0, 7 and 14 days (d). ADSC and BMSC were infused into alginate hydrogels, which polymerized upon the addition of Ca+2 ions. Both stem cell types were differentiated into osteoblasts using 0.1 μm dexamethasone, 10 mm beta glycerophosphate and 50 μm ascorbic acid, whereas adipocytes were differentiated using 10 μm insulin, 1 μm dexamethasone, and 0.5 mm IBMX. Osteogenic differentiation was confirmed using alkaline phosphatase, Von Kossa, and alizarin red S staining and adipogenic differentiation was confirmed using Oil Red O. Cell viability and proliferation was quantified using the MTT assay. Gene expression was measured using qPCR. The morphology of ADSC and BMSC differentiated toward osteogenic lineages changed with both cell types forming osteogenic nodules over time. The nodules formed by ADSC were larger in diameter than those formed by BMSC. Unlike the osteogenic cells that formed nodules, the ADSC and BMSC differentiated into adipogenic cells showed no significant changes in cell size or aggregation. Gene expression results indicated increased PPARG expression in BMSC with time whereas ADSC showed a peak of expression on day 7 and then decreased. ADSC showed increased (14-fold) PPRG expression when compared with BMSC. ADSC had 160-fold less expression of ALP than BMSC. BMSC showed a 16-fold higher expression level of BGLAP than ADSC. ADSC showed a 15.8% higher expression than BMSC for COL1a1. Both ADSC and BMSC showed similar trends SPARC expression, but BMSC had a 12-fold higher expression of SPP1 than ADSC. In summary, both types of mesenchymal stem cells successfully differentiated into both lineages and maintained viability in the hydrogel over time. In conclusion, alginate is a viable scaffold material for the differentiation of mesenchymal stem cells for tissue engineering applications. These results allow for future studies using the pig as an in vivo fat and bone tissue engineering model. This research was supported by the Illinois Regenerative Medicine Institute.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Soukaina Bahsoun ◽  
Karen Coopman ◽  
Elizabeth C. Akam

AbstractMesenchymal stem cells (MSCs) represent an invaluable asset for the field of cell therapy. Human Bone marrow-derived MSCs (hBM-MSCs) are one of the most commonly used cell types in clinical trials. They are currently being studied and tested for the treatment of a wide range of diseases and conditions. The future availability of MSCs therapies to the public will require a robust and reliable delivery process. Cryopreservation represents the gold standard in cell storage and transportation, but its effect on BM-MSCs is still not well established. A systematic review was conducted to evaluate the impact of cryopreservation on BM-MSCs and to attempt to uncover the reasons behind some of the controversial results reported in the literature. Forty-one in vitro studies were analysed, and their results organised according to the cell attributes they assess. It was concluded that cryopreservation does not affect BM-MSCs morphology, surface marker expression, differentiation or proliferation potential. However, mixed results exist regarding the effect on colony forming ability and the effects on viability, attachment and migration, genomic stability and paracrine function are undefined mainly due to the huge variabilities governing the cryopreservation process as a whole and to the lack of standardised assays.


2021 ◽  
Author(s):  
Kannan Govindaraj ◽  
Sakshi Khurana ◽  
Marcel Karperien ◽  
Janine Nicole Post

The master transcription factor SOX9 is a key player during chondrocyte differentiation, cartilage development, homeostasis and disease. Modulation of SOX9 and its target gene expression is essential during chondrogenic, osteogenic and adipogenic differentiation of human mesenchymal stem cells (hMSCs). However, lack of sufficient knowledge about the signaling interplay during differentiation remains one of the main reasons preventing successful application of hMSCs in regenerative medicine. We previously showed that Transcription Factor - Fluorescence Recovery After Photobleaching (TF-FRAP) can be used to study SOX9 dynamics at the single cell level. We showed that changes in SOX9 dynamics are linked to its transcriptional activity. Here, we investigated SOX9 dynamics during differentiation of hMSCs into the chondrogenic, osteogenic and adipogenic lineages. We show that there are clusters of cells in hMSCs with distinct SOX9 dynamics, indicating that there are a number of subpopulations present in the heterogeneous hMSCs. SOX9 dynamics data at the single cell resolution revealed novel insights about its activity in these subpopulations (cell types). In addition, the response of SOX9 to differentiation stimuli varied in these subpopulations. Moreover, we identified donor specific differences in the number of cells per cluster in undifferentiated hMSCs, and this correlated to their differentiation potential.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Botti Chiara ◽  
Caiafa Ilaria ◽  
Coppola Antonietta ◽  
Cuomo Francesca ◽  
Miceli Marco ◽  
...  

Human mesenchymal stem cells (hMSCs) are attractive for clinical and experimental purposes due to their capability of self-renewal and of differentiating into several cell types. Autologous hMSCs transplantation has been proven to induce therapeutic angiogenesis in ischemic disorders. However, the molecular mechanisms underlying these effects remain unclear. A recent report has connected MSCs multipotency to sirtuin families, showing that SIRT1 can regulate MSCs function. Furthermore, SIRT1 is a critical modulator of endothelial angiogenic functions. Here, we described the generation of an immortalized human mesenchymal bone marrow-derived cell line and we investigated the angiogenic phenotype of our cellular model by inhibiting SIRT1 by both the genetic and pharmacological level. We first assessed the expression of SIRT1 in hMSCs under basal and hypoxic conditions at both RNA and protein level. Inhibition of SIRT1 by sirtinol, a cell-permeable inhibitor, or by specific sh-RNA resulted in an increase of premature-senescence phenotype, a reduction of proliferation rate with increased apoptosis. Furthermore, we observed a consistent reduction of tubule-like formation and migration and we found that SIRT1 inhibition reduced the hypoxia induced accumulation of HIF-1α protein and its transcriptional activity in hMSCs. Our findings identify SIRT1 as regulator of hypoxia-induced response in hMSCs and may contribute to the development of new therapeutic strategies to improve regenerative properties of mesenchymal stem cells in ischemic disorders through SIRT1 modulation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Yi Wang ◽  
Youguo Ying ◽  
Xiaoyan Cui

Mesenchymal stem cells (MSCs) are multipotential cells with capability to form coloniesin vitroand differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs). Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs). Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG). The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy.


2011 ◽  
Vol 23 (1) ◽  
pp. 253 ◽  
Author(s):  
E. Monaco ◽  
M. Bionaz ◽  
A. Lima ◽  
W. L. Hurley ◽  
M. B. Wheeler

Previous data support adipose-derived stem cells as an alternative to bone marrow as a source of adult stem cells for therapeutic purposes. The aim of the present study was to directly compare the transcriptome of adipose-derived (ADSC) and bone marrow-derived (BMSC) mesenchymal stem cells prior to differentiation and during in vitro osteogenic and adipogenic differentiation. The ADSC and BMSC were harvested from 3 adult pigs and differentiated in vitro into adipocytes and osteocytes for up to 4 weeks. Prior to differentiation and at differentiation day 2, 7, and 21, cells were harvested and RNA extracted for transcriptomics analysis by a 13 263 oligo 70-mers array (Sus scrofa AROS V1.0 with extension; Operon). Data were normalized by Lowess and statistical analysis was run using ANOVA with Benjamini-Hochberg false discovery rate (FDR) correction. Data mining was carried out using Ingenuity Pathway Analysis and David. Using an FDR of <0.05 for overall tissue effect and a post-hoc correction of P < 0.001, we observed 65 differentially expressed genes (DEG) between ADSC and BMSC before starting differentiation (0.66% of unique genes in the array). Functional analysis uncovered significant enrichment of extracellular matrix genes with direct roles in cell adhesion, migration, movement, and morphology. When the interaction cell type × differentiation × time was assessed, we observed >2 000 DEG with an FDR <0.05. This large number was mostly due to time effects. When pair-wise comparisons between cell types for each time point during the same differentiation were performed (post-hoc P < 0.001), we observed a strikingly low number of DEG. The number of DEG was lower between cell types in osteogenic (<100 DEG) compared with adipogenic (<200 DEG) differentiation. We observed significant enrichment (FDR-corrected P-value cut-off <0.05) of functions related to metabolism, antigen presentation, angiogenesis, and cell cycle in both differentiation conditions. We also observed an overall greater induction of the enriched functions in ADSC and a decrease in BMSC during adipogenic differentiation and the opposite during osteogenic differentiation except for metabolism, which appeared to be larger in ADSC in all cases. Among the significant enriched functions of DEG between the 2 differentiations, we observed enrichment of genes involved in metabolism, cell death, cell-to-cell signalling, and antigen presentation in ADSC during adipogenic compared with osteogenic differentiation. In BMSC we observed enrichment of functions related to cell death, antigen presentation, and lipid metabolism in osteogenic v. adipogenic differentiation. Overall data uncovered a high similarity at the transcriptional level between ADSC and BMSC both prior to differentiation and during differentiation. Those data support ADSC being particularly similar to BMSC. This work was support by the Illinois Regenerative Medicine Institute (IDPH # 63080017).


Sign in / Sign up

Export Citation Format

Share Document