scholarly journals Pediatric and Adult Low-Grade Gliomas: Where Do the Differences Lie?

Children ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 1075
Author(s):  
Ladina Greuter ◽  
Raphael Guzman ◽  
Jehuda Soleman

Two thirds of pediatric gliomas are classified as low-grade (LGG), while in adults only around 20% of gliomas are low-grade. However, these tumors do not only differ in their incidence but also in their location, behavior and, subsequently, treatment. Pediatric LGG constitute 65% of pilocytic astrocytomas, while in adults the most commonly found histology is diffuse low-grade glioma (WHO II), which mostly occurs in eloquent regions of the brain, while its pediatric counterpart is frequently found in the infratentorial compartment. The different tumor locations require different skillsets from neurosurgeons. In adult LGG, a common practice is awake surgery, which is rarely performed on children. On the other hand, pediatric neurosurgeons are more commonly confronted with infratentorial tumors causing hydrocephalus, which more often require endoscopic or shunt procedures to restore the cerebrospinal fluid flow. In adult and pediatric LGG surgery, gross total excision is the primary treatment strategy. Only tumor recurrences or progression warrant adjuvant therapy with either chemo- or radiotherapy. In pediatric LGG, MEK inhibitors have shown promising initial results in treating recurrent LGG and several ongoing trials are investigating their role and safety. Moreover, predisposition syndromes, such as neurofibromatosis or tuberous sclerosis complex, can increase the risk of developing LGG in children, while in adults, usually no tumor growth in these syndromes is observed. In this review, we discuss and compare the differences between pediatric and adult LGG, emphasizing that pediatric LGG should not be approached and managed in the same way as adult LCG.

2017 ◽  
Vol 127 (4) ◽  
pp. 790-797 ◽  
Author(s):  
Kazuya Motomura ◽  
Atsushi Natsume ◽  
Kentaro Iijima ◽  
Shunichiro Kuramitsu ◽  
Masazumi Fujii ◽  
...  

OBJECTIVEMaximum extent of resection (EOR) for lower-grade and high-grade gliomas can increase survival rates of patients. However, these infiltrative gliomas are often observed near or within eloquent regions of the brain. Awake surgery is of known benefit for the treatment of gliomas associated with eloquent regions in that brain function can be preserved. On the other hand, intraoperative MRI (iMRI) has been successfully used to maximize the resection of tumors, which can detect small amounts of residual tumors. Therefore, the authors assessed the value of combining awake craniotomy and iMRI for the resection of brain tumors in eloquent areas of the brain.METHODSThe authors retrospectively reviewed the records of 33 consecutive patients with glial tumors in the eloquent brain areas who underwent awake surgery using iMRI. Volumetric analysis of MRI studies was performed. The pre-, intra-, and postoperative tumor volumes were measured in all cases using MRI studies obtained before, during, and after tumor resection.RESULTSIntraoperative MRI was performed to check for the presence of residual tumor during awake surgery in a total of 25 patients. Initial iMRI confirmed no further tumor resection in 9 patients (36%) because all observable tumors had already been removed. In contrast, intraoperative confirmation of residual tumor during awake surgery led to further tumor resection in 16 cases (64%) and eventually an EOR of more than 90% in 8 of 16 cases (50%). Furthermore, EOR benefiting from iMRI by more than 15% was found in 7 of 16 cases (43.8%). Interestingly, the increase in EOR as a result of iMRI for tumors associated mainly with the insular lobe was significantly greater, at 15.1%, than it was for the other tumors, which was 8.0% (p = 0.001).CONCLUSIONSThis study revealed that combining awake surgery with iMRI was associated with a favorable surgical outcome for intrinsic brain tumors associated with eloquent areas. In particular, these benefits were noted for patients with tumors with complex anatomy, such as those associated with the insular lobe.


1968 ◽  
Vol 59 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Lars-Ake Idahl ◽  
Bo Hellman

ABSTRACT The combination of enzymatic cycling and fluorometry was used for measuring glucose and glucose-6-phosphate in pancreatic β-cells from obese-hyperglycaemic mice. The glucose level of the β-cells corresponded to that of serum over a wide concentration range. In the exocrine pancreas, on the other hand, a significant barrier to glucose diffusion across the cell membranes was demonstrated. During 5 min of ischaemia, the glucose level remained practically unchanged in the β-cells while it increased in the liver and decreased in the brain. The observation that the pancreatic β-cells are characterized by a relatively low ratio of glucose-6-phosphate to glucose may be attributed to the presence of a specific glucose-6-phosphatase.


2020 ◽  
pp. 304-312

Background: Insult to the brain, whether from trauma or other etiologies, can have a devastating effect on an individual. Symptoms can be many and varied, depending on the location and extent of damage. This presentation can be a challenge to the optometrist charged with treating the sequelae of this event as multiple functional components of the visual system can be affected. Case Report: This paper describes the diagnosis and subsequent ophthalmic management of an acquired brain injury in a 22 year old male on active duty in the US Army. After developing acute neurological symptoms, the patient was diagnosed with a pilocytic astrocytoma of the cerebellum. Emergent neurosurgery to treat the neoplasm resulted in iatrogenic cranial nerve palsies and a hemispheric syndrome. Over the next 18 months, he was managed by a series of providers, including a strabismus surgeon, until presenting to our clinic. Lenses, prism, and in-office and out-of-office neurooptometric rehabilitation therapy were utilized to improve his functioning and make progress towards his goals. Conclusions: Pilocytic astrocytomas are the most common primary brain tumors, and the vast majority are benign with excellent surgical prognosis. Although the most common site is the cerebellum, the visual pathway is also frequently affected. If the eye or visual system is affected, optometrists have the ability to drastically improve quality of life with neuro-optometric rehabilitation.


Author(s):  
Walter Ott

Descartes’s treatment of perception in the Optics, though published before the Meditations, contains a distinct account of sensory experience. The end of the chapter suggests some reasons for this oddity, but that the two accounts are distinct is difficult to deny. Descartes in the present work topples the brain image from its throne. In its place, we have two mechanisms, one purely causal, the other inferential. Where the proper sensibles are concerned, the ordination of nature suffices to explain why a given sensation is triggered on the occasion of a given brain motion. The same is true with regard to the common sensibles. But on top of this purely causal story, Descartes re-introduces his doctrine of natural geometry.


1971 ◽  
Vol 34 (4) ◽  
pp. 537-543 ◽  
Author(s):  
Richard A. Lende ◽  
Wolff M. Kirsch ◽  
Ralph Druckman

✓ Cortical removals which included precentral and postcentral facial representations resulted in relief of facial pain in two patients. Because of known failures following only postcentral (SmI) ablations, these operations were designed to eliminate also the cutaneous afferent projection to the precentral gyrus (MsI) and the second somatic sensory area (SmII). In one case burning pain developed after a stroke involving the brain stem and was not improved by total fifth nerve section; prompt relief followed corticectomy and lasted until death from heart disease 20 months later. In the other case persistent steady pain that developed after fifth rhizotomy for trigeminal neuralgia proved refractory to frontal lobotomy; relief after corticectomy was immediate and has lasted 14 months. Cortical localization was established by stimulation under local anesthesia. Each removal extended up to the border of the arm representation and down to the upper border of the insula. Such a resection necessarily included SmII, and in one case responses presumably from SmII were obtained before removal. The suggestions of Biemond (1956) and Poggio and Mountcastle (1960) that SmII might be concerned with pain sensibility may be pertinent in these cases.


2021 ◽  
Vol 22 (14) ◽  
pp. 7582
Author(s):  
Evgenii Gusev ◽  
Alexey Sarapultsev ◽  
Desheng Hu ◽  
Valeriy Chereshnev

The COVID-19 pandemic examines not only the state of actual health care but also the state of fundamental medicine in various countries. Pro-inflammatory processes extend far beyond the classical concepts of inflammation. They manifest themselves in a variety of ways, beginning with extreme physiology, then allostasis at low-grade inflammation, and finally the shockogenic phenomenon of “inflammatory systemic microcirculation”. The pathogenetic core of critical situations, including COVID-19, is this phenomenon. Microcirculatory abnormalities, on the other hand, lie at the heart of a specific type of general pathological process known as systemic inflammation (SI). Systemic inflammatory response, cytokine release, cytokine storm, and thrombo-inflammatory syndrome are all terms that refer to different aspects of SI. As a result, the metabolic syndrome model does not adequately reflect the pathophysiology of persistent low-grade systemic inflammation (ChSLGI). Diseases associated with ChSLGI, on the other hand, are risk factors for a severe COVID-19 course. The review examines the role of hypoxia, metabolic dysfunction, scavenger receptors, and pattern-recognition receptors, as well as the processes of the hemophagocytic syndrome, in the systemic alteration and development of SI in COVID-19.


Author(s):  
Jonathan D. Breshears ◽  
Franco DeMonte ◽  
Ahmed Habib ◽  
Paul W. Gidley ◽  
Shaan M. Raza

Abstract Background Skull base chondrosarcomas (CSA) are difficult tumors to cure and there is little data regarding salvage therapy. Objective This study aims to identify presentation and treatment-related factors which impact the progression free survival (PFS) and disease specific survival (DSS) for recurrent CSA, and to identify salvage treatment factors associated with successful restoration to the natural history following primary treatment. Methods This single-institution retrospective review included patients with recurrent/progressive CSA over a 25-year period. Survival analysis for factors impacting PFS and DSS was performed. Salvage treatment factors associated with achieving PFS ≥newly diagnosed median PFS were identified using univariate statistics. Analysis was performed on first recurrences and all recurrences combined. Results A total of 47 recurrence/progression events were analyzed from 17 patients (median two events/patient, range = 1–8). The overall PFS and DSS for the initial recurrence was 32 (range = 3–267) and 79 (range = 3–285) months, respectively. Conventional grade III or mesenchymal histology significantly predicted shorter PFS and DSS (p < 0.0001). After stratification by histology, previous radiation predicted shorter PFS for low-grade tumors (p = 0.009). Gross total resection (GTR) after a first time recurrence was significantly associated with successful salvage treatment (p < 0.05); however, this was rare. Conclusion In this series, high grade histology and prior radiation treatment negatively impacted salvage treatment outcomes, while GTR was associated with restoration to natural history following primary treatment. Careful consideration of histology, systemic disease status, previous treatments, and the anatomic extent of the skull base disease can optimize the outcomes of salvage intervention.


2020 ◽  
pp. 1-24
Author(s):  
Conrad N. Trumbore

Amyloid-β (Aβ) and tau oligomers have been identified as neurotoxic agents responsible for causing Alzheimer’s disease (AD). Clinical trials using Aβ and tau as targets have failed, giving rise to calls for new research approaches to combat AD. This paper provides such an approach. Most basic AD research has involved quiescent Aβ and tau solutions. However, studies involving laminar and extensional flow of proteins have demonstrated that mechanical agitation of proteins induces or accelerates protein aggregation. Recent MRI brain studies have revealed high energy, chaotic motion of cerebrospinal fluid (CSF) in lower brain and brainstem regions. These and studies showing CSF flow within the brain have shown that there are two energetic hot spots. These are within the third and fourth brain ventricles and in the neighborhood of the circle of Willis blood vessel region. These two regions are also the same locations as those of the earliest Aβ and tau AD pathology. In this paper, it is proposed that cardiac systolic pulse waves that emanate from the major brain arteries in the lower brain and brainstem regions and whose pulse waves drive CSF flows within the brain are responsible for initiating AD and possibly other amyloid diseases. It is further proposed that the triggering of these diseases comes about because of the strengthening of systolic pulses due to major artery hardening that generates intense CSF extensional flow stress. Such stress provides the activation energy needed to induce conformational changes of both Aβ and tau within the lower brain and brainstem region, producing unique neurotoxic oligomer molecule conformations that induce AD.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650016 ◽  
Author(s):  
Loukianos Spyrou ◽  
David Martín-Lopez ◽  
Antonio Valentín ◽  
Gonzalo Alarcón ◽  
Saeid Sanei

Interictal epileptiform discharges (IEDs) are transient neural electrical activities that occur in the brain of patients with epilepsy. A problem with the inspection of IEDs from the scalp electroencephalogram (sEEG) is that for a subset of epileptic patients, there are no visually discernible IEDs on the scalp, rendering the above procedures ineffective, both for detection purposes and algorithm evaluation. On the other hand, intracranially placed electrodes yield a much higher incidence of visible IEDs as compared to concurrent scalp electrodes. In this work, we utilize concurrent scalp and intracranial EEG (iEEG) from a group of temporal lobe epilepsy (TLE) patients with low number of scalp-visible IEDs. The aim is to determine whether by considering the timing information of the IEDs from iEEG, the resulting concurrent sEEG contains enough information for the IEDs to be reliably distinguished from non-IED segments. We develop an automatic detection algorithm which is tested in a leave-subject-out fashion, where each test subject’s detection algorithm is based on the other patients’ data. The algorithm obtained a [Formula: see text] accuracy in recognizing scalp IED from non-IED segments with [Formula: see text] accuracy when trained and tested on the same subject. Also, it was able to identify nonscalp-visible IED events for most patients with a low number of false positive detections. Our results represent a proof of concept that IED information for TLE patients is contained in scalp EEG even if they are not visually identifiable and also that between subject differences in the IED topology and shape are small enough such that a generic algorithm can be used.


Sign in / Sign up

Export Citation Format

Share Document