scholarly journals Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products

2020 ◽  
Vol 2 (3) ◽  
pp. 377-391 ◽  
Author(s):  
Leonel J. R. Nunes ◽  
Liliana M. E. F. Loureiro ◽  
Letícia C. R. Sá ◽  
Hugo F. C. Silva

Agroforestry waste stores a considerable amount of energy that can be used. Portugal has great potential to produce bioenergy. The waste generated during agricultural production and forestry operation processes can be used for energy generation, and it can be used either in the form in which it is collected, or it can be processed using thermochemical conversion technologies, such as torrefaction. This work aimed to characterize the properties of a set of residues from agroforestry activities, namely rice husk, almond husk, kiwi pruning, vine pruning, olive pomace, and pine woodchips. To characterize the different materials, both as-collected and after being subjected to a torrefaction process at 300 °C, thermogravimetric analyses were carried out to determine the moisture content, ash content, fixed carbon content, and the content of volatile substances; elementary analyses were performed to determine the levels of carbon, nitrogen, hydrogen, and oxygen, and the high and low heating values were determined. With these assumptions, it was observed that each form of residual biomass had different characteristics, which are important to know when adapting to conversion technology, and they also had different degrees of efficiency, that is, the amount of energy generated and potentially used when analyzing all factors.

2020 ◽  
Vol 10 (7) ◽  
pp. 2546 ◽  
Author(s):  
Leonel J.R. Nunes

The search for different forms of biomass that can be used as an alternative to those more traditional ones has faced numerous difficulties, namely those related to disadvantages that the majority of residual forms present. However, these residual forms of biomass also have advantages, namely the fact that, by being outside the usual biomass supply chains for energy, they are usually much cheaper, and therefore contribute to a significant reduction in production costs. To improve the less-favorable properties of these biomasses, thermochemical conversion technologies, namely torrefaction, are presented as a way to improve the combustibility of these materials. However, it is a technology that has not yet demonstrated its full potential, mainly due to difficulties in the process of scale-up and process control. In this article it is intended to present the experience obtained over 5 years in the operation of a biomass torrefaction plant with an industrial pilot scale, where all the difficulties encountered and how they were corrected are presented, until it became a fully operational plant. This article, in which a real case study is analyzed, presents in a descriptive way all the work done during the time from when the plant started up and during the commissioning period until the state of continuous operation had been reached.


Recycling ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 12 ◽  
Author(s):  
Leonel J. R. Nunes ◽  
Liliana M. E. F. Loureiro ◽  
Letícia C. R. Sá ◽  
Hugo F.C. Silva

The demand for new sources of energy is one of the main quests for humans. At the same time, there is a growing need to eliminate or recover a set of industrial or agroforestry waste sources. In this context, several options may be of interest, especially given the amounts produced and environmental impacts caused. Olive pomace can be considered one of these options. Portugal, as one of the most prominent producers of olive oil, therefore, also faces the problem of dealing with the waste of the olive oil industry. Olive pomace energy recovery is a subject referenced in many different studies and reports since long ago. However, traditional forms of recovery, such as direct combustion, did not prove to be the best solution, mainly due to its fuel properties and other characteristics, which cause difficulties in its storage and transportation as well. Torrefaction and pyrolysis can contribute to a volume reduction, optimizing storage and transportation. In this preliminary study, were carried out torrefaction and pyrolysis tests on olive pomace samples, processed at 300 °C, 400 °C, and 500 °C, followed by laboratory characterization of the materials. It was verified an improvement in the energy content of the materials, demonstrating that there is potential for the use of these thermochemical conversion technologies for the energy recovery of olive pomace.


Author(s):  
Francesca Valenti ◽  
Simona Porto ◽  
Giovanni Cascone ◽  
Claudia Arcidiacono

Renewable energy sources represent a suitable alternative to conventional fossil fuels, due to the possible advantages in terms of environmental impact reduction. Anaerobic digestion of biomasses could be considered an environmental friendly way to treat and revalorise large amounts of by-products from farming industries because it ensures both pollution control and energy recovery. Therefore, the objective of this study was to define a methodology for evaluating the potential biogas production available from citrus pulp and olive pomace, which are suitable agricultural by-products for biogas production. In the first phase of the study, the spatial distribution of both olive and citrus-producing areas was analysed in Sicily, a geographical area of the Mediterranean basin highly representative of these types of cultivation. Then, a GIS-based model, which had been previously defined and utilised to evaluate the amount of citrus pulp and olive pomace production, was applied to this case study. Based on the results obtained for the different provinces of Sicily, the province of Catania was chosen as the study area of this work since it showed the highest production of both citrus pulp and olive pomace. Therefore, a further analysis regarded the quantification of olive pomace and citrus pulp at municipal level. The results of this analysis showed that the total amount of available citrus pulp and olive pomace corresponded theoretically to about 11,102,469 Nm3/year biogas. Finally, the methodology adopted in this study made it possible to identify suitable areas for the development of new biogas plants by considering both the spatial distribution of the olive and citrus growing areas and the locations of the existing processing industries.


2015 ◽  
Vol 2 (3) ◽  
pp. 26-31
Author(s):  
K. Węglarzy ◽  
Yu. Shliva ◽  
B. Matros ◽  
G. Sych

Aim. To optimize the methane digestion process while using different recipes of substrate components of ag- ricultural origin. Methods. The chemical composition of separate components of the substrate of agricultural by-products, industrial wastes, fats of the agrorefi nery and corn silage was studied. Dry (organic) mass, crude protein (fat) fi ber, loose ash, nitrogen-free exhaust were estimated in the components and the productivity of biogas was determined along with the methane content. These data were used as a basis for daily recipes of the substrate and the analysis of biogas production at the biogas station in Kostkowice. Results. The application of by-products of agricultural production solves the problem of their storage on boards and in open containers, which reduces investment costs, related to the installation of units for their storage. Conclusions. The return on investment for obtaining electric energy out of agricultural biogas depends considerably on the kind of the substrate used and on technological and market conditions.


2012 ◽  
Vol 20 (6) ◽  
pp. 698-702 ◽  
Author(s):  
Yan-Ying BAI ◽  
Fei LUN ◽  
Zhi CAO ◽  
Lu HE ◽  
Xing-Chen LIU ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 801
Author(s):  
Maria Detopoulou ◽  
Agathi Ntzouvani ◽  
Filio Petsini ◽  
Labrini Gavriil ◽  
Εlizabeth Fragopoulou ◽  
...  

Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present study was to evaluate the impact of a new functional yogurt enriched with PAF inhibitors of natural origin from olive oil by-products on PAF metabolism. Ninety-two apparently healthy, but mainly overweight volunteers (35–65 years) were randomly allocated into three groups by block-randomization. The activities of PAF’s biosynthetic and catabolic enzymes were measured, specifically two isoforms of acetyl-CoA:lyso-PAF acetyltransferase (LPCATs), cytidine 5′-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT) and two isoforms of platelet activating factor acetylhydrolase in leucocytes (PAF-AH) and plasma (lipoprotein associated phospholipase-A2, LpPLA2). The intake of the enriched yogurt resulted in reduced PAF-CPT and LpPLA2 activities. No difference was observed in the activities of the two isoforms of lyso PAF-AT. In conclusion, intake of yogurt enriched in PAF inhibitors could favorably modulate PAF biosynthetic and catabolic pathways.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 9
Author(s):  
Franklin Chamorro ◽  
María Carpena ◽  
Bernabé Nuñez-Estevez ◽  
Miguel A. Prieto ◽  
Jesus Simal-Gandara

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops, and from the industrialization of the product. Generally, these wastes are accumulated in landfills or burned, sometimes causing environmental problems. However, many scientific studies suggest that these residues are rich in bioactive compounds, so these matrices could be revalued for their use in food, cosmetic, or pharmaceutical industries. In this way, the circular and sustainable economy is favored, while obtaining products with high added value. In this case, this approach is applied to the residues generated from kiwi production, since numerous studies have shown the high content of kiwi in bioactive compounds of interest, such as phenolic compounds, vitamins, and carotenoids. These compounds have been reported for their antioxidant, anti-inflammatory, and antimicrobial activities, among other beneficial properties for health such as its use as prebiotic. Therefore, this article reviews the potential of residues derived from industrial processing and agricultural maintenance of kiwi as promising matrices for the development of new nutraceutical, cosmetic, or pharmacological products, obtaining, at the same time, economic returns and a reduction of the environmental impact of this industry, attaching it to the perspective of the circular economy.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2021 ◽  
Vol 11 (12) ◽  
pp. 5722
Author(s):  
Stefania Lucantonio ◽  
Andrea Di Giuliano ◽  
Katia Gallucci

The European research project CLARA (chemical looping gasification for sustainable production of biofuels, G.A. 817841) investigated chemical looping gasification of wheat straw pellets. This work focuses on pretreatments for this residual biomass, i.e., torrefaction and torrefaction-washing. Devolatilizations of individual pellets were performed in a laboratory-scale fluidized bed made of sand, at 700, 800, and 900 °C, to quantify and analyze the syngas released from differently pretreated biomasses; experimental data were assessed by integral-average parameters: gas yield, H2/CO molar ratio, and carbon conversion. A new analysis of devolatilization data was performed, based on information from instantaneous peaks of released syngas, by simple regressions with straight lines. For all biomasses, the increase of devolatilization temperature between 700 and 900 °C enhanced the thermochemical conversion in terms of gas yield, carbon conversion, and H2/CO ratio in the syngas. Regarding pretreatments, the main evidence is the general improvement of syngas quality (i.e., composition) and quantity, compared to those of untreated pellets; only slighter differentiations were observed concerning different pretreatments, mainly thanks to peak quantities, which highlighted an improvement of the H2/CO molar ratio in correlation with increased torrefaction temperature from 250 to 270 °C. The proposed methods emerged as suitable straightforward tools to investigate the behavior of biomasses and the effects of process parameters and biomass nature.


Sign in / Sign up

Export Citation Format

Share Document