scholarly journals Testing the CMIP6 GCM Simulations versus Surface Temperature Records from 1980–1990 to 2011–2021: High ECS Is Not Supported

Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 161
Author(s):  
Nicola Scafetta

The last-generation CMIP6 global circulation models (GCMs) are currently used to interpret past and future climatic changes and to guide policymakers, but they are very different from each other; for example, their equilibrium climate sensitivity (ECS) varies from 1.83 to 5.67 °C (IPCC AR6, 2021). Even assuming that some of them are sufficiently reliable for scenario forecasts, such a large ECS uncertainty requires a pre-selection of the most reliable models. Herein the performance of 38 CMIP6 models are tested in reproducing the surface temperature changes observed from 1980–1990 to 2011–2021 in three temperature records: ERA5-T2m, ERA5-850mb, and UAH MSU v6.0 Tlt. Alternative temperature records are briefly discussed but found to be not appropriate for the present analysis because they miss data over large regions. Significant issues emerge: (1) most GCMs overestimate the warming observed during the last 40 years; (2) there is great variability among the models in reconstructing the climatic changes observed in the Arctic; (3) the ocean temperature is usually overestimated more than the land one; (4) in the latitude bands 40° N–70° N and 50° S–70° S (which lay at the intersection between the Ferrel and the polar atmospheric cells) the CMIP6 GCMs overestimate the warming; (5) similar discrepancies are present in the east-equatorial pacific region (which regulates the ENSO) and in other regions where cooling trends are observed. Finally, the percentage of the world surface where the (positive or negative) model-data discrepancy exceeds 0.2, 0.5 and 1.0 °C is evaluated. The results indicate that the models with low ECS values (for example, 3 °C or less) perform significantly better than those with larger ECS. Therefore, the low ECS models should be preferred for climate change scenario forecasts while the other models should be dismissed and not used by policymakers. In any case, significant model-data discrepancies are still observed over extended world regions for all models: on average, the GCM predictions disagree from the data by more than 0.2 °C (on a total mean warming of about 0.5 °C from 1980–1990 to 2011–2021) over more than 50% of the global surface. This result suggests that climate change and its natural variability remain poorly modeled by the CMIP6 GCMs. Finally, the ECS uncertainty problem is discussed, and it is argued (also using semi-empirical climate models that implement natural oscillations not predicted by the GCMs) that the real ECS could be between 1 and 2 °C, which implies moderate warming for the next decades.

2012 ◽  
Vol 27 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Erin L. McClymont ◽  
Raja S. Ganeshram ◽  
Laetitia E. Pichevin ◽  
Helen M. Talbot ◽  
Bart E. van Dongen ◽  
...  

2017 ◽  
Vol 30 (17) ◽  
pp. 6701-6722 ◽  
Author(s):  
Daniel Bannister ◽  
Michael Herzog ◽  
Hans-F. Graf ◽  
J. Scott Hosking ◽  
C. Alan Short

The Sichuan basin is one of the most densely populated regions of China, making the area particularly vulnerable to the adverse impacts associated with future climate change. As such, climate models are important for understanding regional and local impacts of climate change and variability, like heat stress and drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are validated over the Sichuan basin by evaluating how well each model can capture the phase, amplitude, and variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005. The results reveal that the majority of the models do not capture the basic spatial pattern and observed means, trends, and probability distribution functions. In particular, mean and minimum temperatures are underestimated, especially during the winter, resulting in biases exceeding −3°C. Models that reasonably represent the complex basin topography are found to generally have lower biases overall. The five most skillful climate models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century temperature projections for the region. Under the CMIP5 high-emission future climate change scenario, representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approximately 4°C (with an average warming rate of +0.72°C decade−1), with the greatest warming located over the central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean temperature exceeds 28°C) is shown to increase in the twenty-first century at a faster rate compared to the twentieth century.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1551
Author(s):  
Jiaqi Zhang ◽  
Xiangjin Shen ◽  
Yanji Wang ◽  
Ming Jiang ◽  
Xianguo Lu

The area and vegetation coverage of forests in Changbai Mountain of China have changed significantly during the past decades. Understanding the effects of forests and forest coverage change on regional climate is important for predicting climate change in Changbai Mountain. Based on the satellite-derived land surface temperature (LST), albedo, evapotranspiration, leaf area index, and land-use data, this study analyzed the influences of forests and forest coverage changes on summer LST in Changbai Mountain. Results showed that the area and vegetation coverage of forests increased in Changbai Mountain from 2003 to 2017. Compared with open land, forests could decrease the summer daytime LST (LSTD) and nighttime LST (LSTN) by 1.10 °C and 0.07 °C, respectively. The increase in forest coverage could decrease the summer LSTD and LSTN by 0.66 °C and 0.04 °C, respectively. The forests and increasing forest coverage had cooling effects on summer temperature, mainly by decreasing daytime temperature in Changbai Mountain. The daytime cooling effect is mainly related to the increased latent heat flux caused by increasing evapotranspiration. Our results suggest that the effects of forest coverage change on climate should be considered in climate models for accurately simulating regional climate change in Changbai Mountain of China.


2010 ◽  
Vol 6 (5) ◽  
pp. 609-626 ◽  
Author(s):  
Q. Zhang ◽  
H. S. Sundqvist ◽  
A. Moberg ◽  
H. Körnich ◽  
J. Nilsson ◽  
...  

Abstract. The climate response over northern high latitudes to the mid-Holocene orbital forcing has been investigated in three types of PMIP (Paleoclimate Modelling Intercomparison Project) simulations with different complexity of the modelled climate system. By first undertaking model-data comparison, an objective selection method has been applied to evaluate the capability of the climate models to reproduce the spatial response pattern seen in proxy data. The possible feedback mechanisms behind the climate response have been explored based on the selected model simulations. Subsequent model-model comparisons indicate the importance of including the different physical feedbacks in the climate models. The comparisons between the proxy-based reconstructions and the best fit selected simulations show that over the northern high latitudes, summer temperature change follows closely the insolation change and shows a common feature with strong warming over land and relatively weak warming over ocean at 6 ka compared to 0 ka. Furthermore, the sea-ice-albedo positive feedback enhances this response. The reconstructions of temperature show a stronger response to enhanced insolation in the annual mean temperature than winter and summer temperature. This is verified in the model simulations and the behaviour is attributed to the larger contribution from the large response in autumn. Despite a smaller insolation during winter at 6 ka, a pronounced warming centre is found over Barents Sea in winter in the simulations, which is also supported by the nearby northern Eurasian continental and Fennoscandian reconstructions. This indicates that in the Arctic region, the response of the ocean and the sea ice to the enhanced summer insolation is more important for the winter temperature than the synchronous decrease of the insolation.


2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2010 ◽  
Vol 23 (23) ◽  
pp. 6143-6152 ◽  
Author(s):  
Adam A. Scaife ◽  
Tim Woollings ◽  
Jeff Knight ◽  
Gill Martin ◽  
Tim Hinton

Abstract Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


2014 ◽  
Vol 72 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Miranda C. Jones ◽  
William W. L. Cheung

Abstract Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that variability is introduced into projected distributions through alternative datasets and modelling procedures. However, a multi-model approach to assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans. We make species-specific projections of distribution shift using each SDM, subsequently aggregating them to calculate indices of change across a set of 802 species of exploited marine fish and invertebrates. Results indicate an average poleward latitudinal shift across species and SDMs at a rate of 15.5 and 25.6 km decade−1 for a low and high emissions climate change scenario, respectively. Predicted distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the equator. Specifically, between 10°N and 10°S, we predicted that, on average, 6.5 species would become locally extinct per 0.5° latitude under the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.5° latitude in the Arctic Ocean and 1.5 species per 0.5° latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction intensity are robust to the different SDM used and coincide with high levels of agreement.


2021 ◽  
Vol 270 ◽  
pp. 01023
Author(s):  
Nikolay Makhonko ◽  
Sergey Belousov ◽  
Elena Tarasova

The article is devoted to the problems of the development of the Arctic as a territory of international cooperation, taking into account the national interests of individual states. The specificity of geopolitical, social, economic, and climatic conditions determines the need to develop conceptual foundations of legal support for the implementation of environmental engineering processes at the development of the Arctic and research on climatic changes of the region. The article analyzes the main strategic and legal documents regulating the implementation activities in relation to the technical and technological support in the question of the development of the Arctic territories and the preservation of climatic stability. The options for creating an adequate system of convergence of national and international legal regulation in the field of determining anthropogenic pollutants and fixing key indicators of the state of the Arctic environment are detailized and characterized. The scientific substantiation of the causes and consequences of climate change in the Arctic ecological systems is given. The advantages of scientific research with the use of modern engineering and digitalization methods, as well as the usage of information and communication technologies for the prompt exchange of environmentally significant information, are revealed. It is noted that thе most topical issues, the national strategies for the development of the Arctic zones of the Russian Federation, Denmark, Norway, and Canada are of a similar nature. They have common approaches to the preservation of vulnerable Arctic ecological systems and the conceptual foundations of legal support for engineering in Arctic scientific research in the field of climate change and conservation.


2021 ◽  
pp. 1-56
Author(s):  
Joseph W. Lockwood ◽  
Carolina O. Dufour ◽  
Stephen M. Griffies ◽  
Michael Winton

AbstractThis study investigates the occurrence of the Weddell Sea Polynya under an idealized climate change scenario by evaluating simulations from climate models of different ocean resolutions. The GFDL-CM2.6 climate model, with roughly 3.8 km horizontal ocean grid spacing in the high latitudes, forms aWeddell Sea Polynya at similar time and duration under idealized climate change forcing as under pre-industrial forcing. In contrast, all convective models forming the fifth phase of the Coupled Model Intercomparison Project (CMIP5) show either a cessation or a slowdown of Weddell Sea Polynya events under climate warming. The representation of the Antarctic Slope Current and related Antarctic Slope Front is found to be key in explaining the differences between the two categories of models, with these features being more realistic in CM2.6 than in CMIP5. In CM2.6, the freshwater input driven by sea ice melt and enhanced runoff found under climate warming largely remains on the shelf region since the slope front restricts the lateral spread of the freshwater. In contrast, for most CMIP5 models, open ocean stratification is enhanced by freshening since the absence of a slope front allows coastal freshwater anomalies to spread into the open ocean. This enhanced freshening contributes to the slow down the occurrence ofWeddell Sea Polynyas. Hence, an improved representation of Weddell Sea shelf processes in current climate models is desirable to increase our ability to predict the fate of the Weddell Sea Polynyas under climate change.


Sign in / Sign up

Export Citation Format

Share Document