scholarly journals Deuterium Retention and Release Behavior from Beryllium Co-Deposited Layers at Distinct Ar/D Ratio

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1443
Author(s):  
Paul Dinca ◽  
Cornel Staicu ◽  
Corneliu Porosnicu ◽  
Oana G. Pompilian ◽  
Ana-Maria Banici ◽  
...  

Beryllium-deuterium co-deposited layers were obtained using DC magnetron sputtering technique by varying the Ar/D2 gas mixture composition (10/1; 5/1; 2/1 and 1:1) at a constant deposition rate of 0.06 nm/s, 343 K substrate temperature and 2 Pa gas pressure. The surface morphology of the layers was analyzed using Scanning Electron Microscopy and the layer crystalline structure was analyzed by X-ray diffraction. Rutherford backscattering spectrometry was employed to determine the chemical composition of the layers. D trapping states and inventory quantification were performed using thermal desorption spectroscopy. The morphology of the layers is not influenced by the Ar/D2 gas mixture composition but by the substrate type and roughness. The increase of the D2 content during the deposition leads to the deposition of Be-D amorphous layers and also reduces the layer thickness by decreasing the sputtering yield due to the poisoning of the Be target. The D retention in the layers is dominated by the D trapping in low activation binding states and the increase of D2 flow during deposition leads to a significant build-up of deuterium in these states. Increase of deuterium flow during deposition consequently leads to an increase of D retention in the beryllium layers up to 300%. The resulted Be-D layers release the majority of their D (above 99.99%) at temperatures lower than 700 K.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Qing Wu ◽  
Max Döbeli ◽  
Tiziana Lombardo ◽  
Katharina Schmidt-Ott ◽  
Benjamin Watts ◽  
...  

AbstractIn the previous paper (Part I), the colorimetry and interferometric microscopy measurements on modern gold leaf models have revealed that the visual appearance of a gilded surface, both burnished and unburnished, depends strongly on the substrate type, surface roughness and texture, but not on the colour of the substrate. In this second part, we investigate the materials compositions and technical specifications of medieval gold leaf through combining literature sources and materials analysis such as scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM–EDX) on samples taken from gilded wooden sculptures. Our study shows that the late medieval gold leaf has a high purity of about 23.7 carat and has an average thickness of 160 nm (with a peak value of 138 nm), purer and thicker than the modern gold leaves studies in Part I. Supportive Rutherford backscattering spectrometry (RBS) measurements on gilded models confirms the accuracy and reliability of the SEM–EDX observations on the medieval gold leaf samples. We additionally present observations of a rarely recorded special variant of medieval gold leaf—“fine reinforced gold leaf”. Combined with the findings from Part I, we conclude that light penetrating the medieval gold leaf and reflected from the gilding substrate could not be a significant, or even perceptible contribution to the visual appearance of the gilding. We argue that the misconception surrounding the correlation between the substrate colour and the gilded surface appearance can be attributed to the historical development of gilding and polychromy technologies.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. V. Dimitrov ◽  
A. S. Murthy ◽  
G. C. Hadjipanayis ◽  
C. P. SWANN

AbstractFe-O and Co-O films were prepared by DC magnetron sputtering in a mixture of Ar and O2 gases. By varying the oxygen to argon ratio, oxide films with stoichiometry FeO, Fe3O4, α-Fe2O3, CoO and Co3O4 were produced. TEM studies showed that the Fe – oxide films were polycrystalline consisting of small almost spherical grains, about 10 nm in size. Co-O films had different microstructure with grain size and shape dependent on the amount of oxygen. X-ray diffraction studies showed that the grains in Fe-O films were randomly oriented in contrast to Co-O films in which a <111> texture was observed. Pure FeO and α-Fe2O3 films were found to be superparamagnetic at room temperature but strongly ferromagnetic at low temperatures in contrast to the antiferromagnetic nature of bulk samples. A very large shift in the hysteresis loop, about 3800 Oe, was observed in field cooled Co-CoO films indicating the presence of a large unidirectional exchange anisotropy.


2008 ◽  
Vol 595-598 ◽  
pp. 897-905
Author(s):  
Eric Caudron ◽  
Régis Cueff ◽  
Christophe Issartel ◽  
N. Karimi ◽  
Frédéric Riffard ◽  
...  

Manganese addition and subsequent yttrium implantation effects on extra low carbon steel were studied by Rutherford Backscattering Spectrometry (RBS), Reflection High Energy Electron Diffraction (RHEED), X-ray Diffraction (XRD) and Glancing Angle X-ray Diffraction (GAXRD). Thermogravimetry and in situ X-Ray Diffraction at 700°C and PO2=0.04 Pa for 24h were used to determine the manganese alloying addition and subsequent yttrium implantation effects on reference steel oxidation resistance at high temperatures. This study clearly shows the combined effect of manganese alloying addition and subsequent yttrium implantation which promotes the formation of several yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
YiChao Yan ◽  
Wei Shi ◽  
HongChuan Jiang ◽  
Jie Xiong ◽  
WanLi Zhang ◽  
...  

The redox reaction between Al and metallic oxide has its advantage compared with intermetallic reaction and Al/NiO nanomutlilayers are a promising candidate for enhancing the performance of energetic igniter. Al/NiO nanomutlilayers with different modulation periods are prepared on alumina substrate by direct current (DC) magnetron sputtering. The thicknesses of each period are 250 nm, 500 nm, 750 nm, 1000 nm, and 1500 nm, respectively, and the total thickness is 3 μm. The X-ray diffraction (XRD) and scanning electron microscope (SEM) results of the as-deposited Al/NiO nanomutlilayers show that the NiO films are amorphous and the layered structures are clearly distinguished. The X-ray photoelectron spectroscopy (XPS) demonstrates that the thickness of Al2O3increases on the side of Al monolayer after annealing at 450°C. The thermal diffusion time becomes greater significantly as the amount of thermal boundary conductance across the interfaces increases with relatively smaller modulation period. Differential scanning calorimeter (DSC) curve suggests that the energy release per unit mass is below the theoretical heat of the reaction due to the nonstoichiometric ratio between Al and NiO and the presence of impurities.


2020 ◽  
Author(s):  
Qing Wu ◽  
Max Döbeli ◽  
Tiziana Lombardo ◽  
Katharina Schmidt-Ott ◽  
Benjamin Watts ◽  
...  

Abstract In the previous paper (Part I), the colorimetry and interferometric microscopy measurements on modern gold leaf models have revealed that the visual appearance of a gilded surface, both burnished and unburnished, depends strongly on the substrate type, surface roughness and texture, but not on the colour of the substrate. In this second part, we investigate the materials compositions and technical specifications of medieval gold leaf through combining literature sources and materials analysis such as scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX) on samples taken from gilded artefacts. Our study shows that the late medieval gold leaf has a high purity of about 23.7 carat and has an average thickness of 160 nm (with a peak value of 138 nm), purer and thicker than the modern gold leaves studies in Part I. Supportive Rutherford backscattering spectrometry (RBS) measurements on gilded models confirms the accuracy and reliability of the SEM-EDX observations on the medieval gold leaf samples. We additionally present observations of a rarely recorded special variant of medieval gold leaf – “fine reinforced gold leaf”. Combined with the findings from Part I, we conclude that light penetrating the medieval gold leaf and reflected from the substrate could not be a significant, or even perceptible contribution to the visual appearance of the gilding. We argue that the misconception surrounding the correlation between the substrate colour and the gilded surface appearance can be attributed to the historical development of gilding and polychromy technologies.


1999 ◽  
Vol 595 ◽  
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

AbstractWe report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


2019 ◽  
Vol 26 (07) ◽  
pp. 1850217 ◽  
Author(s):  
O. ÇOMAKLI ◽  
A. F. YETIM ◽  
B. KARACA ◽  
A. ÇELIK

The 31CrMoV9 steels were plasma nitrided under different gas mixture ratios to investigate an influence of nitrogen amount on wear behavior. The structure, mechanical and tribological behavior of untreated and nitrided 31CrMoV9 steels were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), microhardness device, 3D profilometer and pin-on-disk wear tester. The analysis outcomes displayed that the compound layer consists of nitride phases (Fe2N, Fe3N, Fe4N and CrN). Additionally, the thickness of the compound layers, surface hardness and roughness increased with increasing nitrogen amount in the gas mixture. The highest friction coefficient value was obtained at nitrogen amount of 50%, but the lowest value was seen at nitrogen amount of 6%. It was observed that wear resistance of 31CrMoV9 steel improved after plasma nitriding, and the best wear resistance was also obtained from plasma nitrided sample at the gas mixture of 94% H[Formula: see text]% N2.


Sign in / Sign up

Export Citation Format

Share Document